Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Driess, Danny"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Optimality principles in human point-to-manifold reaching accounting for muscle dynamics
    (2020) Wochner, Isabell; Driess, Danny; Zimmermann, Heiko; Häufle, Daniel F. B.; Toussaint, Marc; Schmitt, Syn
    Human arm movements are highly stereotypical under a large variety of experimental conditions. This is striking due to the high redundancy of the human musculoskeletal system, which in principle allows many possible trajectories toward a goal. Many researchers hypothesize that through evolution, learning, and adaption, the human system has developed optimal control strategies to select between these possibilities. Various optimality principles were proposed in the literature that reproduce human-like trajectories in certain conditions. However, these studies often focus on a single cost function and use simple torque-driven models of motion generation, which are not consistent with human muscle-actuated motion. The underlying structure of our human system, with the use of muscle dynamics in interaction with the control principles, might have a significant influence on what optimality principles best model human motion. To investigate this hypothesis, we consider a point-to-manifold reaching task that leaves the target underdetermined. Given hypothesized motion objectives, the control input is generated using Bayesian optimization, which is a machine learning based method that trades-off exploitation and exploration. Using numerical simulations with Hill-type muscles, we show that a combination of optimality principles best predicts human point-to-manifold reaching when accounting for the muscle dynamics.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart