Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Eberhardt, Bernhard"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Efficient and robust background modeling with dynamic mode decomposition
    (2022) Krake, Tim; Bruhn, Andrés; Eberhardt, Bernhard; Weiskopf, Daniel
    A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use.
  • Thumbnail Image
    ItemOpen Access
    Unsupervised and generic short-term anticipation of human body motions
    (2020) Enes, Kristina; Errami, Hassan; Wolter, Moritz; Krake, Tim; Eberhardt, Bernhard; Weber, Andreas; Zimmermann, Jörg
    Various neural network based methods are capable of anticipating human body motions from data for a short period of time. What these methods lack are the interpretability and explainability of the network and its results. We propose to use Dynamic Mode Decomposition with delays to represent and anticipate human body motions. Exploring the influence of the number of delays on the reconstruction and prediction of various motion classes, we show that the anticipation errors in our results are comparable to or even better for very short anticipation times (<0.4 s) than a recurrent neural network based method. We perceive our method as a first step towards the interpretability of the results by representing human body motions as linear combinations of previous states and delays. In addition, compared to the neural network based methods large training times are not needed. Actually, our methods do not even regress to any other motions than the one to be anticipated and hence it is of a generic nature.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart