Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Ehlers, Wolfgang (Prof. Dr.-Ing)"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    A multiphasic continuum mechanical model for design investigations of an effusion-cooled rocket thrust chamber
    (2005) Ghadiani, Saeed Reza; Ehlers, Wolfgang (Prof. Dr.-Ing)
    In this thesis, the new concept of the German Aerospace Center (DLR) for an effusion-cooled ceramic rocket combustion chamber is investigated. Using effusion cooling, the porous inner liner of the chamber is cooled by passing the coolant through its pores. The theoretical treatment of the fluid-saturated deformable porous construction under non-isothermal conditions leads to a coupled solid-fluid model which is formulated in this thesis within the framework of the Theory of Porous Media (TPM). The multiphasic continuum mechanical model created allows for the definition of mechanical loads, thermal loads as well as a fluid mass flow across the boundary. All necessary constitutive equations are physically expedient conclusions resulting from the evaluation of the determining entropy inequality. The FE-tool PANDAS from the Institute of Mechanics (civil engineering) at University of Stuttgart is used as numerical solver. The numerical simulations discussed in this work are restricted to the qualitative demonstration of the most important physical effects occurring in the construction under study. For a real design study, material parameters have to be determined by experiments which are not the subject of this thesis. Corresponding experiments are being performed in ongoing activities at the DLR. The model presented in this work has to be understood as a general tool for the design investigation of actively cooled porous constructions.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart