Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Elyshev, Andrey V."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Single crystals of EuScCuSe3 : synthesis, experimental and DFT investigations
    (2023) Grigoriev, Maxim V.; Ruseikina, Anna V.; Chernyshev, Vladimir A.; Oreshonkov, Aleksandr S.; Garmonov, Alexander A.; Molokeev, Maxim S.; Locke, Ralf J. C.; Elyshev, Andrey V.; Schleid, Thomas
    EuScCuSe3 was synthesized from the elements for the first time by the method of cesium-iodide flux. The crystal belongs to the orthorhombic system (Cmcm) with the unit cell parameters a = 3.9883(3) Å, b = 13.2776(9) Å, c = 10.1728(7) Å, V = 538.70(7) Å3. Density functional (DFT) methods were used to study the crystal structure stability of EuScCuSe3 in the experimentally obtained Cmcm and the previously proposed Pnma space groups. It was shown that analysis of elastic properties as Raman and infrared spectroscopy are powerless for this particular task. The instability of EuScCuSe3 in space group Pnma space group is shown on the basis of phonon dispersion curve simulation. The EuScCuSe3 can be assigned to indirect wide-band gap semiconductors. It exhibits the properties of a soft ferromagnet at temperatures below 2 K.
  • Thumbnail Image
    ItemOpen Access
    Synthesis, crystal structure and properties of the new laminar quaternary tellurides SrLnCuTe3 (Ln = Sm, Gd-Tm and Lu)
    (2023) Ruseikina, Anna V.; Grigoriev, Maxim V.; Molokeev, Maxim S.; Garmonov, Alexander A.; Elyshev, Andrey V.; Locke, Ralf J. C.; Schleid, Thomas
    This paper reports for the first time on the new laminar quaternary orthorhombic heterometallic quaternary tellurides SrLnCuTe3, the fabrication of which has been a challenge until this work. Data on the crystal structure of tellurides complete the series of quaternary strontium chalcogenides SrLnCuCh3 (Ch = S, Se, Te). Single crystals of the compounds were synthesized from the elements by the halogenide-flux method at 1070 K. The compounds are crystallizing in two space groups Pnma (Ln = Sm, Gd and Tb) and Cmcm (Ln = Dy-Tm and Lu). For SrSmCuTe3 (a = 11.4592(7), b = 4.3706(3), c = 14.4425(9) Å, space group: Pnma) with the largest lanthanoid cation, Sr2+ shows C.N. = 7, whereas Sm3+ reveals a diminished coordination number C.N. = 6. For SrLuCuTe3 (a = 4.3064(3), b = 14.3879(9), c = 11.1408(7) Å, space group: Cmcm) with the smallest lanthanoid cation, coordination numbers of six are realized for both high-charged cations (Sr2+ and Lu3+: C.N. = 6). The cations Sr2+, Ln3+, Cu+ each take independent positions. The structures are built by distorted [CuTe4]7- tetrahedra, forming the infinite chains {∞1[Cu(Te1)1/1t(Te2)1/1t(Te3)2/2e]5−} along [010] in SrLnCuTe3 (Ln = Sm, Gd and Tb) and [100] in SrLnCuTe3 (Ln = Dy-Tm and Lu). The distortion of the polyhedra [CuTe4]7- was compared for the whole series SrLnCuTe3 by means of τ4-descriptor for the four coordinating Te2- anions, which revealed a decrease in the degree of distortion with a decreasing radius at Ln3+. The distorted octahedra [LnTe6]9- form layers {∞2[Ln(Te1)2/2(Te2)2/2(Te3)2/2]3−}. The distorted octahedra and tetrahedra fuse to form parallel layers {∞2[CuLnTe3]2−} and between them, the Sr2+ cations providing three-dimensionality of the structure are located. In the SrLnCuTe3 (Ln = Sm, Gd and Tb) structures, the Sr2+ cations center capped the trigonal prisms [SrTe6+1]12−, united in infinite chains {∞1[Sr(Te1)2/2(Te2)3/3(Te3)2/2]4−} along the [100] direction. The domains of existence of the Ba2MnS3, BaLaCuS3, Eu2CuS3 and KZrCuS3 structure types are defined in the series of orthorhombic chalcogenides SrLnCuCh3 (Ch = S, Se and Te). The tellurides SrLnCuTe3 (Ln = Tb-Er) of both structure types in the temperature range from 2 up to 300 K are paramagnetic, without showing clear signs of a magnetic phase transition.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart