Browsing by Author "Feldbacher, Martin"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Hubbard and Kondo lattice models in two dimensions : a QMC study(2003) Feldbacher, Martin; Assaad, Fakher F. (Prof. Dr.)This thesis discusses mainly two Fermionic lattice systems, first a Kondo lattice with additional Hubbard interaction and second a Hubbard Hamiltonian augmented with additional spin and charge interactions. We first introduce the Quantum Monte Carlo technique, which is then employed to study the two respective systems. We present an innovation that allows to calculate time displaced Greens functions more efficiently. Compared with previously used numerically stable algorithms the new method gains an order of magnitude in speed, but is just as precise, and very simple to implement. In the second chapter we consider the Kondo lattice model in two dimensions at half filling. In addition to the Fermionic hopping integral t and the superexchange coupling J the role of a Coulomb repulsion U in the conduction band is investigated. We find the model to display a magnetic order-disorder transition in the U-J plane with a critical value of Jc which is decreasing as a function of U. The single-particle spectral function A(k,ω) is computed across this transition. We conclude that (i) the local screening of impurity spins determines the low-energy behavior of the spectral function and (ii) one cannot deform continuously the spectral function of the half-filled Hubbard model at J=0 to that of the Kondo insulator at J>Jc. In the third chapter we investigate the phase diagram of a new model that exhibits a first order transition between s-wave superconducting and antiferromagnetic phases. The model, a generalized Hubbard model augmented with competing spin-spin and pair-pair interactions, was investigated using the projector quantum Monte Carlo method. Upon varying the Hubbard U from attractive to repulsive, we find a first order phase transition between superconducting and antiferromagnetic states.