Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Fox, Bronwyn L."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Mechanical, thermal and electrical properties of epoxy nanocomposites with amine-functionalized reduced graphene oxide via plasma treatment
    (2022) Ackermann, Annika C.; Fischer, Michael; Wick, Alexander; Carosella, Stefan; Fox, Bronwyn L.; Middendorf, Peter
    A suitable functionalization of graphene and its derivatives can further enhance the material properties of nanocomposites. In contrast to chemical functionalization methods that have been extensively researched, functionalization by plasma treatment is relatively unexplored. In this work, we compare the mechanical, thermal and electrical characteristics of an epoxy matrix incorporating loadings from 0.00 to 1.50 wt% of non-functionalized (rGO) and amine-functionalized reduced graphene oxide (frGO) for which the functionalization is realized by plasma processing. No significant difference between the rGO- and frGO-including nanocomposites was observed with respect to the stiffness, strength, specific heat capacity, coefficient of thermal expansion and electrical conductivity. Yet, the composites with 1.50 wt% frGO (rGO) exhibited a thermal conductivity that was 27% (20%) higher than the neat polymer due to the enhanced interface, which enabled a better transfer of heat. In addition, a considerable increase in the specific heat capacity and thermal conductivity was established with rising temperatures. This information will facilitate the choice of materials depending on the loading and functionalization of graphene materials for composite applications with an epoxy matrix.
  • Thumbnail Image
    ItemOpen Access
    Rheology, dispersion, and cure kinetics of epoxy filled with amine‐ and non‐functionalized reduced graphene oxide for composite manufacturing
    (2021) Ackermann, Annika C.; Carosella, Stefan; Rettenmayr, Markus; Fox, Bronwyn L.; Middendorf, Peter
    This study evaluates the effect of plasma surface functionalization of reduced graphene oxide particles on the processing characteristics and homogeneity of dispersion of a bisphenol A‐(epichlorhydrin) epoxy matrix and amine‐based hardener with varying weight fractions from 0.00 to 1.50 wt%. It was observed that amine‐functionalized reduced graphene oxide leads to a more drastic viscosity increase of up to 18‐fold of the uncured suspensions and that its presence influences the conversion rates of the curing reaction. Optical microscopy of thin sections and transmission electron microscopy analysis showed that a more homogeneous dispersion of the particles could be achieved especially at higher weight fractions by using an appropriate surface functionalization. This knowledge can be used to define suitable processing conditions for epoxies with amine‐based hardeners depending on the loading and functionalization of graphene‐related particles.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart