Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Frank, Celina"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Characterization of Agrobacterium tumefaciens PPKs reveals the formation of oligophosphorylated products up to nucleoside nona-phosphates
    (2020) Frank, Celina; Teleki, Attila; Jendrossek, Dieter
    Agrobacterium tumefaciens synthesizes polyphosphate (polyP) in the form of one or two polyP granules per cell during growth. The A. tumefaciens genome codes for two polyphosphate kinase genes, ppk1AT and ppk2AT, of which only ppk1AT is essential for polyP granule formation in vivo. Biochemical characterization of the purified PPK1AT and PPK2AT proteins revealed a higher substrate specificity of PPK1AT (in particular for adenine nucleotides) than for PPK2AT. In contrast, PPK2AT accepted all nucleotides at comparable rates. Most interestingly, PPK2AT catalyzed also the formation of tetra-, penta-, hexa-, hepta-, and octa-phosphorylated nucleosides from guanine, cytosine, desoxy-thymidine, and uridine nucleotides and even nona-phosphorylated adenosine. Our data - in combination with in vivo results - suggest that PPK1AT is important for the formation of polyP whereas PPK2AT has the function to replenish nucleoside triphosphate pools during times of enhanced demand. The potential physiological function(s) of the detected oligophosphorylated nucleotides await clarification.
  • Thumbnail Image
    ItemOpen Access
    Migration of polyphosphate granules in Agrobacterium tumefaciens
    (2022) Frank, Celina; Pfeiffer, Daniel; Aktas, Meriyem; Jendrossek, Dieter
    Agrobacterium tumefaciens has two polyphosphate (polyP) kinases, one of which (PPK1AT) is responsible for the formation of polyP granules, while the other (PPK2AT) is used for replenishing the NTP pools by using polyP as a phosphate donor to phosphorylate nucleoside diphosphates. Fusions of eYFP with PPK2AT or of the polyP granule-associated phosin PptA from Ralstonia eutropha always co-localized with polyP granules in A. tumefaciens and allowed the tracking of polyP granules in time-lapse microscopy experiments without the necessity to label the cells with the toxic dye DAPI. Fusions of PPK1AT with mCherry formed fluorescent signals often attached to, but not completely co-localizing with, polyP granules in wild-type cells. Time-lapse microscopy revealed that polyP granules in about one-third of a cell population migrated from the old pole to the new cell pole shortly before or during cell division. Many cells de novo formed a second (nonmigrating) polyP granule at the opposite cell pole before cell division was completed, resulting in two daughter cells each having a polyP granule at the old pole after septum formation. Migration of polyP granules was disordered in mitomycin C-treated or in PopZ-depleted cells, suggesting that polyP granules can associate with DNA or with other molecules that are segregated during the cell cycle.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart