Browsing by Author "Freeman, Beau J."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Modernization criteria assessment for water resources planning; Klamath Irrigation Project, U.S.(2008) Freeman, Beau J.; Bárdossy, András (Prof. Dr. rer. nat. Dr.-Ing.)Agricultural irrigation is the largest consumer of diverted surface water and groundwater resources in the world, with major regions becoming critically water deficit. Agriculture in the western United States (US) and elsewhere has reached the point where the demands from irrigators, domestic users, and various commercial interests for allocated quantities and qualities are beyond acceptable levels for environmental needs in many river basins. Despite decades of investment in irrigation projects by governments, foreign lending agencies, and development banks in numerous countries, irrigation performance remains unsatisfactorily low and in many places progress is being reversed due to water logging, salinization, over-drafting of aquifers, environmental degradation, and infrastructure deterioration. Maintaining current irrigation practices will lead to worsening environmental and economic consequences. To restore healthy ecosystems and sustain irrigated agriculture, irrigation modernization should be promoted as a key component of basin-level water management to effectively balance competing water needs. Improvements in the technical and economic efficiency of irrigation water use through modernization increase the quantity and quality of freshwater available in a river basin. Significant public and private investments in modernization will be required to facilitate the precise control and monitoring of reallocated flows at different levels of irrigation systems, especially on a real-time basis, and thus provide excellent water delivery service to water districts, end-users, and other commercial and environmental stakeholders. This doctoral study investigates a specific problem that many irrigation professionals and water resources planners will face in the future: how to effectively analyze and make an assessment of irrigation modernization project-alternatives. Selecting the best modernization strategy to pursue from potential project-alternatives in water resources planning is a complex decision-making process. Irrigation modernization alternatives and their impacts involve a variety of diverse stakeholders in the selection of preferred engineering solutions based on subjectively defined criteria (quantitative and qualitative). As a consequence, technical feasibility, environmental, social/community, institutional, political, and economic factors have to be properly assessed as part of water resources planning. This research introduces a strategic decision analysis methodology for the definition, evaluation, ranking, and selection of appropriate modernization strategies in an engineering case study of the Klamath Irrigation Project (89,000 ha). In 2001 a combination of events occurred there that led to one of the most prominent conflicts over water supplies in the U.S. Due to stricter flow requirements put in place to protect fish species and a critical drought, irrigation water was unexpectedly withheld from the majority of farms in the Project, resulting in major economic losses, calling the basis for environmental restrictions into question, and generating intense political controversy. The composite programming approach is applied to develop a project ranking index based on standardized indicators – effective for analyzing the trade-offs associated with balancing technical and water conservation considerations with eco-system health, economics, and risk. This modernization criteria assessment requires defining the management objectives according to the nature of the internal processes and agro-hydrological features of the system, selection of alternative engineering solutions, selection of appropriate decision criteria relevant to the specific water-related problems, and the assignment of desirable and critical threshold values pertinent to each criterion. Input data consist of hydrologic, agronomic, engineering, economic, and political/policy information.