Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Frick, Jürgen"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Characterisation of adobe and mud-straw for the restoration and rehabilitation of Persian historical adobe buildings
    (2024) Hejazi, Bina; Luz, Corinna; Grüner, Friedrich; Frick, Jürgen; Garrecht, Harald
    In the restoration or rehabilitation of traditional buildings, compatible materials with known characteristics must be used. However, the existing literature lacks comprehensive studies on the characterisation of Persian mud-straw plaster, focusing primarily on Persian adobe. Moreover, previous research on Persian adobe has primarily employed XRF and XRD tests, neglecting ion chromatography, moisture sorption isotherm determination, and thermogravimetric analysis with differential scanning calorimetry. Consequently, there is a shortage of information regarding the elemental composition, mineralogical characteristics, moisture sorption behaviour, and thermal properties of Persian mud–straw plaster, as well as Persian adobe bricks. This paper aims to address this research gap by examining historical and new adobe bricks and mud–straw plaster used in Iran, utilising a comprehensive array of analytical techniques. The results from XRF analysis reveal relatively similar chemical compositions across all samples, while XRD analysis indicates predominantly similar mineral phases. Ion chromatography results demonstrate higher conductivity and chloride concentrations in the mud–straw samples than the adobe samples, with higher values for new samples than historical ones. Freshly used straw, clay, or soil may have higher chloride concentrations caused by the arid climate and soil salinisation in the area. Additionally, moisture sorption isotherm determination results show that adobe and mud–straw plaster with a higher salt load of chlorides have significantly higher moisture absorption. The increased straw quantity in the samples increases the moisture content. Furthermore, thermogravimetric analysis and differential scanning calorimetry indicate that, at low heating, adobe and mud–straw plaster lose water due to dehydration, and at high heating, they lose carbon dioxide due to decarboxylation. The comprehensive characterisation of Persian adobe and mud–straw plaster in this study fills a significant gap in the literature and offers invaluable insights for informing restoration and rehabilitation processes, ensuring the compatibility of the materials used.
  • Thumbnail Image
    ItemOpen Access
    Impact of wind pressure coefficients on the natural ventilation effectiveness of buildings through simulations
    (2024) Sakiyama, Nayara Rodrigues Marques; Carlo, Joyce Correna; Sakiyama, Felipe Isamu Harger; Abdessemed, Nadir; Frick, Jürgen; Garrecht, Harald
    Natural Ventilation Effectiveness (NVE) is a performance metric that quantifies when outdoor airflows can be used as a cooling strategy to achieve indoor thermal comfort. Based on standard ventilation threshold and building energy simulation (BES) models, the NVE relates available and required airflows to quantify the usefulness of natural ventilation (NV) through design and building evaluation. Since wind is a significant driving force for ventilation, wind pressure coefficients (Cp) represent a critical boundary condition when assessing building airflows. Therefore, this paper investigates the impact of different Cp sources on wind-driven NVE results to see how sensitive the metric is to this variable. For that, an experimental house and a measurement period were used to develop and calibrate the initial BES model. Four Cp sources are considered: an analytical model from the BES software (i), surface-averaged Cp values for building windows that were calculated with Computational Fluid Dynamics (CFD) simulations using OpenFOAM through a cloud-based platform (iia,b,c), and two databases-AIVC (iii) and Tokyo Polytechnic University (TPU) (iv). The results show a variance among the Cp sources, which directly impacts airflow predictions; however, its effect on the performance metric was relatively small. The variation in the NVE outcomes with different Cp’s was 3% at most, and the assessed building could be naturally ventilated around 75% of the investigated time on the first floor and 60% in the ground floor spaces.
  • Thumbnail Image
    ItemOpen Access
    Using CFD to evaluate natural ventilation through a 3D parametric modeling approach
    (2021) Sakiyama, Nayara R. M.; Frick, Jürgen; Bejat, Timea; Garrecht, Harald
    Predicting building air change rates is a challenge for designers seeking to deal with natural ventilation, a more and more popular passive strategy. Among the methods available for this task, computational fluid dynamics (CFD) appears the most compelling, in ascending use. However, CFD simulations require a range of settings and skills that inhibit its wide application. With the primary goal of providing a pragmatic CFD application to promote wind-driven ventilation assessments at the design phase, this paper presents a study that investigates natural ventilation integrating 3D parametric modeling and CFD. From pre- to post-processing, the workflow addresses all simulation steps: geometry and weather definition, including incident wind directions, a model set up, control, results’ edition, and visualization. Both indoor air velocities and air change rates (ACH) were calculated within the procedure, which used a test house and air measurements as a reference. The study explores alternatives in the 3D design platform’s frame to display and compute ACH and parametrically generate surfaces where air velocities are computed. The paper also discusses the effectiveness of the reference building’s natural ventilation by analyzing the CFD outputs. The proposed approach assists the practical use of CFD by designers, providing detailed information about the numerical model, as well as enabling the means to generate the cases, visualize, and post-process the results.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart