Browsing by Author "Giesselmann, Frank"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Efficient and spatially controlled functionalization of SBA‐15 and initial results in asymmetric Rh‐catalyzed 1,2‐additions under confinement(2021) Beurer, Ann‐Katrin; Kirchhof, Manuel; Bruckner, Johanna R.; Frey, Wolfgang; Baro, Angelika; Dyballa, Michael; Giesselmann, Frank; Laschat, Sabine; Traa, YvonneSelectively functionalized mesoporous silica may considerably advance heterogeneous catalysis through the controlled immobilization of highly selective complex catalysts inside the mesopores. However, spatially controlled functionalization and the precise analytical verification are still a challenge. In this publication, we report a method, which ensures a selective functionalization of the mesopore surface with a clickable linker and thus makes it possible to study confinement effects during catalyzed reactions. First, we passivate the silanol groups on the particle surface and in the pore entrances of the mesoporous silica material SBA‐15 with 1,1,1‐trimethyl‐N‐(trimethylsilyl)silanamine. Then we remove the template by solvent extraction and functionalize the pore walls with 3‐azidopropyltriethoxysilane before we click the catalyst. In initial experiments of asymmetric Rh‐catalyzed 1,2‐addition, we investigate the performance of a catalyst clicked selectively in the mesopores and compare it to the dissolved catalyst as well as to the catalyst immobilized exclusively on the external surface of SBA‐15.Item Open Access Magnetic tilting in nematic liquid crystals driven by self‐assembly(2021) Hähsler, Martin; Nádasi, Hajnalka; Feneberg, Martin; Marino, Sebastian; Giesselmann, Frank; Behrens, Silke; Eremin, AlexeySelf‐assembly is one of the crucial mechanisms allowing the design multifunctional materials. Soft hybrid materials contain components of different natures and exhibit competitive interactions which drive self‐organization into structures of a particular function. Here a novel type of a magnetic hybrid material where the molecular tilt can be manipulated through a delicate balance between the topologically‐assisted colloidal self‐assembly of magnetic nanoparticles and the anisotropic molecular interactions in a liquid crystal matrix is demonstrated.Item Open Access Micellar lyotropic nematic gels(2021) Dieterich, Sonja; Stemmler, Friedrich; Preisig, Natalie; Giesselmann, FrankLyotropic liquid crystal (LLC) gels are a new class of liquid crystal (LC) networks that combine the anisotropy of micellar LLCs with the mechanical stability of a gel. However, so far, only micellar LLC gels with lamellar and hexagonal structures have been obtained by the addition of gelators to LLCs. Here, the first examples of lyotropic nematic gels are presented. The key to obtain these nematic gels is the use of gelators that have a non‐amphiphilic molecular structure and thus leave the size and shape of the micellar aggregates essentially unchanged. By adding these gelators to lyotropic nematic phases, an easy and reproducible way to obtain large amounts of lyotropic nematic gels is established. These nematic gels preserve the long‐range orientational order and optical birefringence of a lyotropic nematic phase but have the mechanical stability of a gel. LLC nematic gels are promising new materials for elastic and anisotropic hydrogels to be applied as water‐based stimuli‐responsive actuators and sensors.Item Open Access Molecular electron density distribution and X‐ray diffraction patterns of smectic A liquid crystals : a simulation study(2019) Haege, Christian; Jagiella, Stefan; Giesselmann, FrankX‐ray diffraction (XRD) is one of the most important methods to assess the long‐range translational order in smectic A (SmA) liquid crystals. Nevertheless, the knowledge about the influence of the molecular electron density distribution (MEDD) on the XRD pattern is rather limited because it is not possible to vary the orientational order, the translational order and the MEDD independently in an experiment. We here present a systematic simulation study in which we examine this effect and show that the MEDD indeed has a major impact on the general appearance of the XRD pattern. More specifically, we find that the smectic layer peaks and the intensity ratios thereof strongly depend on the width of the MEDD. The classic approach by Leadbetter et al. to determine the smectic translational order parameter ∑ from XRD intensities works if the MEDD is quite narrow. In all other cases the influence of the MEDD has to be taken into account.Item Open Access Time dependence of gel formation in lyotropic nematic liquid crystals : from hours to weeks(2024) Dombrowski, Max; Herbst, Michael; Preisig, Natalie; Giesselmann, Frank; Stubenrauch, CosimaThe combination of lyotropic liquid crystals (LLCs) and low-molecular-weight gelators (LMWGs) for the formation of lyotropic liquid crystal gels (LLC gels) leads to a versatile and complex material combining properties of both parent systems. We gelled the calamitic nematic NC phases of a binary and ternary system using the LMWG 3,5-bis-(5-hexylcarbamoyl-pentoxy)-benzoic acid hexyl ester (BHPB-6). This binary system consists of the surfactant N,N-dimethyl-N-ethyl-1-hexadecylammonium bromide (CDEAB) and water, whereas the ternary system consists of the surfactant N,N,N-trimethyl-N-tetradecylammonium bromide (C14TAB), the cosurfactant n-decanol, and water. Though containing similar surfactants, the gelled NC phases of the binary and ternary systems show differences in their visual and gel properties. The gelled NC phase of the binary system remains clear for several days after preparation, whereas the gelled NC phase of the ternary system turns turbid within 24 h. We investigated the time evolution of the gel strength with oscillation rheology measurements (a) within the first 24 h and (b) up to two weeks after gel formation. The shape of the fibers was investigated over different time scales with freeze fracture electron microscopy (FFEM). We demonstrate that despite their similarities, the two LLC gels also have distinct differences.Item Open Access Towards nematic phases in ionic liquid crystals : a simulation study(2022) Haege, Christian; Jagiella, Stefan; Giesselmann, FrankIonic liquid crystals (ILCs) are soft matter materials with broad liquid crystalline phases and intrinsic electric conductivity. They typically consist of a rod‐shaped mesogenic ion and a smaller spherical counter‐ion. Their mesomorphic properties can be easily tuned by exchanging the counter ion. ILCs show a strong tendency to form smectic A phases due to the segregation of ionic and the non‐ionic molecular segments. Nematic phases are therefore extremely rare in ILCs and the question of why nematic phases are so exceptional in existing ILCs, and how nematic ILCs might be obtained in the future is of vital interest for both the fundamental understanding and the potential applications of ILCs. Here, we present the result of a simulation study, which highlights the crucial role of the location of the ionic charge on the rod‐like mesogenic ions in the phase behaviour of ILCs. We find that shifting the charge from the ends towards the centre of the mesogenic ion destabilizes the liquid crystalline state and induces a change from smectic A to nematic phases.