Browsing by Author "Giesselmann, Jan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Error control for statistical solutions of hyperbolic systems of conservation laws(2021) Giesselmann, Jan; Meyer, Fabian; Rohde, ChristianStatistical solutions have recently been introduced as an alternative solution framework for hyperbolic systems of conservation laws. In this work, we derive a novel a posteriori error estimate in the Wasserstein distance between dissipative statistical solutions and numerical approximations obtained from the Runge-Kutta Discontinuous Galerkin method in one spatial dimension, which rely on so-called regularized empirical measures. The error estimator can be split into deterministic parts which correspond to spatio-temporal approximation errors and a stochastic part which reflects the stochastic error. We provide numerical experiments which examine the scaling properties of the residuals and verify their splitting.Item Open Access A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws(2020) Giesselmann, Jan; Meyer, Fabian; Rohde, ChristianThis article considers one-dimensional random systems of hyperbolic conservation laws. Existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws, which involve random initial data and random flux functions, are established. Based on these results an a posteriori error analysis for a numerical approximation of the random entropy solution is presented. For the stochastic discretization, a non-intrusive approach, namely the Stochastic Collocation method is used. The spatio-temporal discretization relies on the Runge-Kutta Discontinuous Galerkin method. The a posteriori estimator is derived using smooth reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. The scaling properties of the residuals are investigated and the efficiency of the proposed adaptive algorithms is illustrated in various numerical examples.