Browsing by Author "Gil Pérez, Marta"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systems(2023) Gil Pérez, Marta; Mindermann, Pascal; Zechmeister, Christoph; Forster, David; Guo, Yanan; Hügle, Sebastian; Kannenberg, Fabian; Balangé, Laura; Schwieger, Volker; Middendorf, Peter; Bischoff, Manfred; Menges, Achim; Gresser, Götz T.; Knippers, JanItem Open Access Extension of computational co-design methods for modular, prefabricated composite building components using bio-based material systems(2023) Zechmeister, Christoph; Gil Pérez, Marta; Dambrosio, Niccolo; Knippers, Jan; Menges, AchimRobotic coreless filament winding using alternative material systems based on natural fibers and bio-based resin systems offers possible solutions to the productivity and sustainability challenges of the building and construction sector. Their application in modular, prefabricated structures allows for material-efficient and fast production under tightly controlled conditions leading to high-quality building parts with minimal production waste. Plant fibers made of flax or hemp have high stiffness and strength values and their production consumes less non-renewable energy than glass or carbon fibers. However, the introduction of natural material systems increases uncertainties in structural performance and fabrication parameters. The development process of coreless wound composite parts must thus be approached from the bottom up, treating the material system as an integral part of design and evaluation. Existing design and fabrication methods, as well as equipment, are adjusted to emphasize material aspects throughout the development, increasing the importance of material characterization and scalability evaluation. The reciprocity of material characterization and the fabrication process is highlighted and contributes to a non-linear, cyclical workflow. The implementation of extensions and adaptations are showcased in the development of the livMatS pavilion, a first attempt at coreless filament winding using natural material systems in architecture.Item Open Access Integrative structural design of non-standard building systems : coreless filament-wound structures as a case study(Stuttgart : Institut für Tragkonstruktionen und Konstruktives Entwerfen, Universität Stuttgart, 2023) Gil Pérez, Marta; Knippers, Jan (Prof. Dr.-Ing.)Our society is experiencing the emergence of novel nonstandard building systems unlocked by digital technologies in the building sector. The utilisation of computational design processes and digital fabrication, coupled with the exploration of new materiality, bring the potential to break with conventional ways of building. However, they also demand new ways of designing and proving the structure's safety. This dissertation aims to develop an integrative structural design methodology and workflow to design, optimise and validate non-standard building systems. Therefore, a multiscale, digital-physical approach is proposed, which combines structural simulation with small-scale models and material testing, allowing the structure's optimisation and proof of safety. The first two chapters explain the research motivation, objectives and contextualisation. Historical remarks are given to understand the evolution of structural design and the key aspects that created innovation and non-standard systems in the past. Coreless filament winding (CFW) is also introduced here as a representative example of non-standard building systems. Chapter three contains the publications that describe the development of the integrative structural design methodologies through coreless filament wound structures as a case study. All the publications are supported by CFW specimens or full-scale built demonstrators, including BUGA Fibre Pavilion, Maison Fibre and LivMatS Pavilion. Chapters four and five summarise the results, generalising the workflow from CFW structures to non-standard building systems into four sub-methods: multi-level modelling and evaluation; structural characterisation; integrative design; and optimisation and safety verification. The discussion locates the integrative structural design in the historical context and analyses the strategies to prove the safety of other non-standard systems. The conclusion emphasises the potential of this methodology to shorten the gap between research and industry, facilitating the realisation of innovative structures.Item Open Access Investigation of the fabrication suitability, structural performance, and sustainability of natural fibers in coreless filament winding(2022) Mindermann, Pascal; Gil Pérez, Marta; Knippers, Jan; Gresser, Götz T.Coreless filament winding is an emerging fabrication technology in the field of building construction with the potential to significantly decrease construction material consumption, while being fully automatable. Therefore, this technology could offer a solution to the increasing worldwide demand for building floor space in the next decades by optimizing and reducing the material usage. Current research focuses mainly on the design and engineering aspects while using carbon and glass fibers with epoxy resin; however, in order to move towards more sustainable structures, other fiber and resin material systems should also be assessed. This study integrates a selection of potential alternative fibers into the coreless filament winding process by adapting the fabrication equipment and process. A bio-based epoxy resin was introduced and compared to a conventional petroleum-based one. Generic coreless wound components were created for evaluating the fabrication suitability of selected alternative fibers. Four-point bending tests were performed for assessing the structural performance in relation to the sustainability of twelve alternative fibers and two resins. In this study, embodied energy and global warming potential from the literature were used as life-cycle assessment indexes to compare the material systems. Among the investigated fibers, flax showed the highest potential while bio-based resins are advisable at low fiber volume ratios.