Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Gohs, Marco"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Multiscale structural mechanics of rotary shaft seals : numerical studies and visual experiments
    (2023) Grün, Jeremias; Gohs, Marco; Bauer, Frank
    Although rotary shaft seals have been used successfully in many industrial applications for decades, their tribological behavior is still not completely understood. In-depth knowledge of the structural mechanics is essential for the design and optimization of such sealing systems. High complexity results from the multiscale interactions in the tribological system rotary shaft seal. Large macroscopic deformations occur due to the hyperelastic material behavior of elastomers coupled with microscopic tangential distortions of the sealing edge surface in the contact area. This paper includes both numerical and experimental studies on the tribological behavior of rotary shaft seals. A multiscale finite element model provides the simulation of the macroscopic deformations and the microscopic displacements. A test rig equipped with a hollow glass shaft enables in situ visual contact analyses, qualitative determinations of pressure distributions and quantitative measurements of elastomer surface distortions. The optical phenomenon of frustrated total internal reflection enables qualitative evaluations of the pressure distribution. Particle image velocimetry (PIV) is employed to quantify the tangential distortions. The test rig enables the measurement of the friction torque with the same configuration. The results of the numerical and experimental investigations for the radial load, friction torque and tangential distortions are compared and discussed. This serves to validate the simulation methods and the correlation of the measured parameters. This finally results in a solid and validated basis for further tribological investigations of rotary shaft seals.
  • Thumbnail Image
    ItemOpen Access
    Studies on 3D printed rotary shaft seals
    (2024) Gohs, Marco; Hannss, Jacqueline; Bauer, Frank
    Rotary shaft seals are an established standard for sealing rotating shafts [1]. The geometry has been optimized over decades and adapted to the material properties to ensure an optimum sealing capability [2]. With the widespread availability of 3D printing technologies, there is a growing interest in printable seals for replacement parts or prototypes. This means that failed parts can be replaced as quickly as possible and the development process can be significantly accelerated. However, geometries established for conventional production cannot be implemented as 3D printed variants without accepting severe functional restrictions. A seal that can be successfully 3D printed must therefore be specially adapted. The following findings provide an overview of the latest research and development in the field of 3D-printed rotary shaft seals.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart