Browsing by Author "Gritti, Clémentine"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Editorial - special issue on security and privacy in blockchains and the IoT volume II(2023) Stach, Christoph; Gritti, ClémentineItem Unknown Protecting sensitive data in the information age : state of the art and future prospects(2022) Stach, Christoph; Gritti, Clémentine; Bräcker, Julia; Behringer, Michael; Mitschang, BernhardThe present information age is characterized by an ever-increasing digitalization. Smart devices quantify our entire lives. These collected data provide the foundation for data-driven services called smart services. They are able to adapt to a given context and thus tailor their functionalities to the user’s needs. It is therefore not surprising that their main resource, namely data, is nowadays a valuable commodity that can also be traded. However, this trend does not only have positive sides, as the gathered data reveal a lot of information about various data subjects. To prevent uncontrolled insights into private or confidential matters, data protection laws restrict the processing of sensitive data. One key factor in this regard is user-friendly privacy mechanisms. In this paper, we therefore assess current state-of-the-art privacy mechanisms. To this end, we initially identify forms of data processing applied by smart services. We then discuss privacy mechanisms suited for these use cases. Our findings reveal that current state-of-the-art privacy mechanisms provide good protection in principle, but there is no compelling one-size-fits-all privacy approach. This leads to further questions regarding the practicality of these mechanisms, which we present in the form of seven thought-provoking propositions.Item Unknown Query processing in blockchain systems : current state and future challenges(2021) Przytarski, Dennis; Stach, Christoph; Gritti, Clémentine; Mitschang, BernhardWhen, in 2008, Satoshi Nakamoto envisioned the first distributed database management system that relied on cryptographically secured chain of blocks to store data in an immutable and tamper-resistant manner, his primary use case was the introduction of a digital currency. Owing to this use case, the blockchain system was geared towards efficient storage of data, whereas the processing of complex queries, such as provenance analyses of data history, is out of focus. The increasing use of Internet of Things technologies and the resulting digitization in many domains, however, have led to a plethora of novel use cases for a secure digital ledger. For instance, in the healthcare sector, blockchain systems are used for the secure storage and sharing of electronic health records, while the food industry applies such systems to enable a reliable food-chain traceability, e.g., to prove compliance with cold chains. In these application domains, however, querying the current state is not sufficient - comprehensive history queries are required instead. Due to these altered usage modes involving more complex query types, it is questionable whether today’s blockchain systems are prepared for this type of usage and whether such queries can be processed efficiently by them. In our paper, we therefore investigate novel use cases for blockchain systems and elicit their requirements towards a data store in terms of query capabilities. We reflect the state of the art in terms of query support in blockchain systems and assess whether it is capable of meeting the requirements of such more sophisticated use cases. As a result, we identify future research challenges with regard to query processing in blockchain systems.Item Unknown SMARTEN : a sample-based approach towards privacy-friendly data refinement(2022) Stach, Christoph; Behringer, Michael; Bräcker, Julia; Gritti, Clémentine; Mitschang, BernhardTwo factors are crucial for the effective operation of modern-day smart services: Initially, IoT-enabled technologies have to capture and combine huge amounts of data on data subjects. Then, all these data have to be processed exhaustively by means of techniques from the area of big data analytics. With regard to the latter, thorough data refinement in terms of data cleansing and data transformation is the decisive cornerstone. Studies show that data refinement reaches its full potential only by involving domain experts in the process. However, this means that these experts need full insight into the data in order to be able to identify and resolve any issues therein, e.g., by correcting or removing inaccurate, incorrect, or irrelevant data records. In particular for sensitive data (e.g., private data or confidential data), this poses a problem, since these data are thereby disclosed to third parties such as domain experts. To this end, we introduce SMARTEN, a sample-based approach towards privacy-friendly data refinement to smarten up big data analytics and smart services. SMARTEN applies a revised data refinement process that fully involves domain experts in data pre-processing but does not expose any sensitive data to them or any other third-party. To achieve this, domain experts obtain a representative sample of the entire data set that meets all privacy policies and confidentiality guidelines. Based on this sample, domain experts define data cleaning and transformation steps. Subsequently, these steps are converted into executable data refinement rules and applied to the entire data set. Domain experts can request further samples and define further rules until the data quality required for the intended use case is reached. Evaluation results confirm that our approach is effective in terms of both data quality and data privacy.