Browsing by Author "Haken, Hermann"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A complexity science account of humor(2023) Tschacher, Wolfgang; Haken, HermannA common assumption of psychological theories of humor is that experienced funniness results from an incongruity between stimuli provided by a verbal joke or visual pun, followed by a sudden, surprising resolution of incongruity. In the perspective of complexity science, this characteristic incongruity-resolution sequence is modeled by a phase transition, where an initial attractor-like script, suggested by the initial joke information, is suddenly destructed, and in the course of resolution replaced by a less probable novel script. The transition from the initial to the enforced final script was modeled as a succession of two attractors with different minimum potentials, during which free energy becomes available to the joke recipient. Hypotheses derived from the model were tested in an empirical study where participants rated the funniness of visual puns. It was found, consistent with the model, that the extent of incongruity and the abruptness of resolution were associated with reported funniness, and with social factors, such as disparagement (Schadenfreude) added to humor responses. The model suggests explanations as to why bistable puns and phase transitions in conventional problem solving, albeit also based on phase transitions, are generally less funny. We proposed that findings from the model can be transferred to decision processes and mental change dynamics in psychotherapy.Item Open Access Information and self-organization II : steady state and phase transition(2021) Haken, Hermann; Portugali, JuvalThis paper starts from Schrödinger’s famous question “what is life” and elucidates answers that invoke, in particular, Friston’s free energy principle and its relation to the method of Bayesian inference and to Synergetics 2nd foundation that utilizes Jaynes’ maximum entropy principle. Our presentation reflects the shift from the emphasis on physical principles to principles of information theory and Synergetics. In view of the expected general audience of this issue, we have chosen a somewhat tutorial style that does not require special knowledge on physics but familiarizes the reader with concepts rooted in information theory and Synergetics.