Browsing by Author "Hamm, Joachim"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Spatio-temporal and polarisation dynamics of semiconductor microcavity lasers(2004) Hamm, Joachim; Hess, Ortwin (Prof. Dr.)Microcavity semiconductor lasers are known for their inherent tight coupling between active material and light-field. The dynamic interaction between the carrier and the photon subsystems is influenced equally strong by both, the dynamics of carriers within the quantum-well and the intra-cavity light-field dynamics. In this work, we develop theoretical models and investigate the nonlinear spatio-temporal behaviour of two prominent types of microcavity lasers, the vertical-cavity surface-emitting laser (VCSEL) and the vertical extended cavity surface-emitting laser (VECSEL). Today's aim to build faster and more powerful semiconductor laser devices goes hand in hand with a miniaturisation of the semiconductor laser structures down to the nanometerscale. Difficult even for simple bulk semiconductor devices, the even tighter coupling of the carrier and light-field sub-systems with respect to time- and length-scales disallow a separate dynamical treatment of the physical processes which take place within such novel microcavity semiconductor lasers. Due to their flexibility and their physical nature, time-domain simulations constitute an appropriate tool for targeting the entangled dynamics within the cavity, the structure and the active quantum-wells. We predict that along with the technological progress of microcavity semiconductor lasers and the availability of inexpensive computing power time-domain methods will gain more importance and constitute a valuable tool to analyse the optical and electronic properties of these devices.