Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Happel, Oliver"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Behavior of PBTC, HEDP, and aminophosphonates in the process of wastewater treatment
    (2019) Rott, Eduard; Happel, Oliver; Armbruster, Dominic; Minke, Ralf
    Ten times at intervals of 1–2 months, individual treatment stages of two wastewater treatment plants (WWTPs) were analyzed for the five quantitatively most widely used phosphonates. The total dissolved concentration of the investigated phosphonates in the influents was between 131 µg/L and 384 µg/L. The nitrogen-free phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) and 1-hydroxyethylidene(1,1-diphosphonic acid) (HEDP) accounted for an average proportion of 83–85%. Diethylenetriaminepenta(methylene phosphonic acid) (DTPMP) contributed with 13–14%, whereas aminotris(methylphosphonic acid) (ATMP) (≤15 µg/L) and ethylenediaminetetra(methylene phosphonic acid) (EDTMP) (≤11 µg/L) contents detected in the WWTP influents were comparatively low. The application of new analytical methods allowed the quantification of phosphonates in the solid fraction of the WWTP influents for the first time. High loads of phosphonates were determined (223–2555 mg/kg), indicating that 20%–80% of the phosphonates are present in the adsorbed state. The removal of total dissolved phosphonate by secondary clarification was between 69.7% and 92.4% (medians: 90.7% and 87.7%). In both WWTPs, HEDP (medians: 89.2% and 86.4%) was slightly better eliminated than PBTC (medians: 87.2% and 82.5%). In the sand filtration stage of a WWTP, the average removal was not further improved. In contrast, an additional removal of dissolved phosphonates could be achieved by activated carbon treatment (median: 96.4%). The proportion of phosphonate-P in the dissolved unreactive phosphorus fraction was consistently between 10% and 40% throughout all treatment stages.
  • Thumbnail Image
    ItemOpen Access
    Influence of wastewater discharge on the occurrence of PBTC, HEDP, and aminophosphonates in sediment, suspended matter, and the aqueous phase of rivers
    (2020) Rott, Eduard; Happel, Oliver; Armbruster, Dominic; Minke, Ralf
    Sediment, suspended matter (SM), and water of a large river (Neckar; River1) and a small river (Körsch; River2) were analyzed for the phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), 1-hydroxyethylidene (1,1-diphosphonic acid) (HEDP), aminotris (methylphosphonic acid) (ATMP), ethylenediaminetetra (methylene phosphonic acid) (EDTMP), and diethylenetriaminepenta (methylene phosphonic acid) (DTPMP). Ten samplings were performed at intervals of one to two months during one year, each covering the relevant matrices before and behind the discharge point of a wastewater treatment plant (WWTP). In River1, the total concentration of dissolved phosphonate did not change significantly (2.4–5.8 µg/L before vs. 2.5–6.6 µg/L behind WWTP; p = 0.9360). In River2, it increased significantly from <0.1–1.6 µg/L to 19–39 µg/L (p < 0.0001). Based on the median, the total phosphonate load in River1 sediment increased 1.9-fold (6.7–29.4 mg/kg before vs. 17.8–53.5 mg/kg behind WWTP; p = 0.0033) and in River2 by a factor of eight (1.8–5.0 mg/kg before vs. 18.1–51.4 mg/kg behind WWTP; p < 0.0001). This indicates that phosphonates discharged by WWTPs adsorb onto solid particles and accumulate in the sediment. In the case of River2, the SM load could reach values of 1000–1710 mg/kg behind the WWTP, presumably due to the introduction of insufficiently retained activated sludge particles of >2000 mg/kg phosphonate loads. In general, the nitrogen-free phosphonates PBTC and HEDP were most predominant in both dissolved and adsorbed form, of which HEDP had the highest adsorption affinity.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart