Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Hasenauer, Jan"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Identification of models of heterogeneous cell populations from population snapshot data
    (2011) Hasenauer, Jan; Waldherr, Steffen; Doszczak, Malgorzata; Radde, Nicole; Scheurich, Peter; Allgöwer, Frank
    Background: Most of the modeling performed in the area of systems biology aims at achieving a quantitative description of the intracellular pathways within a "typical cell". However, in many biologically important situations even clonal cell populations can show a heterogeneous response. These situations require study of cell-to-cell variability and the development of models for heterogeneous cell populations. Results: In this paper we consider cell populations in which the dynamics of every single cell is captured by a parameter dependent differential equation. Differences among cells are modeled by differences in parameters which are subject to a probability density. A novel Bayesian approach is presented to infer this probability density from population snapshot data, such as flow cytometric analysis, which do not provide single cell time series data. The presented approach can deal with sparse and noisy measurement data. Furthermore, it is appealing from an application point of view as in contrast to other methods the uncertainty of the resulting parameter distribution can directly be assessed. Conclusions: The proposed method is evaluated using artificial experimental data from a model of the tumor necrosis factor signaling network. We demonstrate that the methods are computationally efficient and yield good estimation result even for sparse data sets.
  • Thumbnail Image
    ItemOpen Access
    Modeling and parameter estimation for heterogeneous cell populations
    (2013) Hasenauer, Jan; Allgöwer, Frank (Prof. Dr.-Ing.)
    Most of the modeling performed in biology aims at achieving a quantitative description and understanding of the intracellular signaling pathways within a “typical cell”. However, in many biologically important situations even genetically identical cell populations show a heterogeneous response. This means that individual members of the cell population behave differently. Such situations require the study of cell-to-cell variability and the development of models for heterogeneous cell populations. The main contribution of this thesis is the development of unifying modeling frameworks for signal transduction and proliferation processes in heterogeneous cell populations. These modeling frameworks allow for the detailed description of individual cells as well as differences between them. In contrast to many existing modeling approaches, the proposed frameworks allow for a direct comparison of model predictions with available data. Beyond this, the proposed population models can be simulated efficiently and, by exploiting the model structures, we are able to develop model-tailored Bayesian parameter estimation methods. These methods enable the calculation of the optimal parameter estimates, as well as the evaluation of the parameter and prediction uncertainties. The proposed tools allow for novel insights in population dynamics, in particular the model-based characterization of population heterogeneity and cellular subgroups. This is illustrated for two different application examples: pro- and anti-apoptotic signaling, which is interesting in the context of cancer therapy, and immune cell proliferation.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart