Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Heck, Katharina"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Analysis of experimental and simulation data of evaporation‐driven isotopic fractionation in unsaturated porous media
    (2024) Schneider, Jana; Kiemle, Stefanie; Heck, Katharina; Rothfuss, Youri; Braud, Isabelle; Helmig, Rainer; Vanderborght, Jan
    Stable water isotopologs can add valuable information to the understanding of evaporation processes. The identification of the evaporation front from isotopolog concentration depth profiles under very dry soil conditions is of particular interest. We compared two different models that describe isotopolog transport in a drying unsaturated porous medium: SiSPAT‐Isotope and DuMu x . In DuMu x , the medium can dry out completely whereas in SiSPAT‐Isotope, drying is limited to the residual water saturation. We evaluated the impact of residual water saturation on simulated isotopic concentration. For a low residual water saturation, both models simulated similar isotopolog concentrations. For high residual water saturation, SiSPAT‐Isotope simulated considerably lower concentrations than DuMu x . This is attributed to the buffering of changes in isotopolog concentrations by the residual water in SiSPAT‐Isotope and an additional enrichment due to evaporation of residual water in DuMu x . Additionally, we present a comparison between high‐frequency experimental data and model simulations. We found that diffusive transport processes in the laminar boundary layer and in the dried‐out surface soil layer need to be represented correctly to reproduce the observed downward movement of the evaporation front and the associated peak of isotopolog enrichment. Artificially increasing the boundary layer thickness to reproduce a decrease in evaporation rate leads to incorrect simulation of the location of the evaporation front and isotopolog concentration profile.
  • Thumbnail Image
    ItemOpen Access
    Influence of radiation on evaporation rates : a numerical analysis
    (2020) Heck, Katharina; Coltman, Edward; Schneider, Jana; Helmig, Rainer
    We present a fully coupled soil‐atmosphere model that includes radiation in the energy balance of the coupling conditions between the two domains. The model is able to describe evaporation processes under the influence of turbulence, surface roughness, and soil heterogeneities and focuses specifically on the influence of radiation on the mass and energy transport across the soil‐atmosphere interface. It is shown that evaporation rates are clearly dominated by the diurnal cycle of solar irradiance. During Stage‐I evaporation maximum temperatures are regulated due to evaporative cooling, but after a transition into Stage‐II evaporation, temperatures rise tremendously. We compare two different soil types, a coarser, sandy soil and a finer, silty soil, and analyze evaporation rates, surface temperatures, and net radiation for three different wind conditions. The influence of surface undulations on radiation and evaporation is analyzed and shows that radiation can lead to different local drying patterns in the hills and the valleys of the porous medium, depending on the height of the undulations and on the direction of the Sun. At last a comparison of lysimeter measurement data to the numerical examples shows a good match for measured and calculated radiation values but evaporation rates are still overestimated in the model. Possible reasons for the discrepancy between measurement and model data are analyzed and are found to be uncertainties about the parameters close to the interface, which are decisive for determining evaporation rates.
  • Thumbnail Image
    ItemOpen Access
    A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport
    (2018) Koch, Timo; Heck, Katharina; Schröder, Natalie; Class, Holger; Helmig, Rainer
    We have developed a general model concept and a flexible software framework for the description of plant-scale soil-root interaction processes including the essential fluid mechanical processes in the vadose zone. The model was developed in the framework of non-isothermal, multiphase, multicomponent flow and transport in porous media. The software is an extension of the open-source porous media flow and transport simulator DuMux to embedded mixed-dimensional coupled schemes. Our coupling concept allows us to describe all processes in a strongly coupled form and adapt the complexity of the governing equations in favor of either accuracy or computational efficiency. We have developed the necessary numerical tools to solve the strongly coupled nonlinear partial differential equation systems that arise with a locally mass conservative numerical scheme even in the context of evolving root architectures. We demonstrate the model concept and its features, discussing a virtual hydraulic lift experiment including evaporation, root tracer uptake on a locally refined grid, the simultaneous simulation of root growth and root water uptake, and an irrigation scenario comparing different models for flow in unsaturated soil. We have analyzed the impact of evaporation from soil on the soil water distribution around a single plant’s root system. Moreover, we have shown that locally refined grids around the root system increase computational efficiency while maintaining accuracy. Finally, we demonstrate that the assumptions behind the Richards equation may be violated under certain conditions.
  • Thumbnail Image
    ItemOpen Access
    Stable water isotopologue fractionation during soil‐water evaporation : analysis using a coupled soil‐atmosphere model
    (2023) Kiemle, Stefanie; Heck, Katharina; Coltman, Edward; Helmig, Rainer
    The atmosphere‐soil system forms a highly coupled system, which makes key processes such as evaporation complex to analyze as the mass, energy, and momentum transfer is influenced by both domains. To enhance the understanding of evaporation processes from soils, stable water isotopologues are suitable tools to trace water movement within these systems as heavier isotopologues enrich in the residual liquid phase. Due to the complex coupled processes involved in simulating soil‐water evaporation accurately, quantifying fractionation during flow and transport processes at the soil‐atmosphere interface remains an open research area. In this work, we present a multi‐phase multi‐component transport model that resolves flow through the near‐surface atmosphere and the soil, and models transport and fractionation of the stable water isotopologues using the numerical simulation environment DuMux. Using this coupled model, we simulate transport and fractionation processes of stable water isotopologues in soils and the atmosphere by solving compositional flow equations and by using suitable coupling conditions at the soil‐atmosphere interface instead of commonly used parameterization. In a series of examples of evaporation from bare soil, the transport and distribution of stable water isotopologues are evaluated numerically with varied conditions and assumptions, including different atmospheric conditions (turbulent/laminar flow, wind speed) and their impact on the spatial and temporal distribution of the isotopic composition. Building on these results, we observed how the enrichment of the isotopologues in soil is linked with the different stages of the evaporation process. A qualitative study is conducted to verify single fractionation processes in our approach.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart