Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Heim, Thomas"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Cenospheres-reinforced PA-12 composite : preparation, physicochemical properties, and soaking tests
    (2022) Nakonieczny, Damian S.; Antonowicz, Magdalena; Heim, Thomas; Swinarew, Andrzej S.; Nuckowski, Paweł; Matus, Krzysztof; Lemanowicz, Marcin
    The main aim of this research was the preparation of a polymer–ceramic composite with PA-12 as the polymer matrix and modified aluminosilicate cenospheres (CSs) as the ceramic filler. The CSs were subjected to an early purification and cleaning process, which was also taken as a second objective. The CSs were surface modified by a two-step process: (1) etching in Piranha solution and (2) silanization in 3-aminopropyltriethoxysilane. The composite was made for 3D printing by FDM. Raw and modified CSs and a composite with PA-12 were subjected to the following tests: surface development including pores (BET), real density (HP), chemical composition and morphology (SEM/EDS, FTIR), grain analysis (PSD), phase composition (XRD), hardness (HV), and static tensile tests. The composites were subjected to soaking under simulated body fluid (SBF) conditions in artificial saliva for 14, 21, and 29 days. Compared to pure PA-12, PA-12_CS had generally better mechanical properties and was more resistant to SBF at elevated temperatures and soaking times. These results showed this material has potential for use in biomedical applications. These results also showed the necessity of developing a kinetic aging model for aging in different liquids to verify the true value of this material.
  • Thumbnail Image
    ItemOpen Access
    Influence of the feedstock preparation on the properties of highly filled alumina green-body and sintered parts produced by fused deposition of ceramic
    (2023) Heim, Thomas; Kern, Frank
    This paper investigates new approaches for the blending and plastification of ceramic powder with a binder to form fused deposition of ceramic (FDC) feedstock. The fabrication of highly filled ceramic filaments was accomplished using the granulation by agitation technique, followed by twin-screw extruder homogenization and single-screw extruder filament extrusion. The feedstocks are based on alumina (Al2O3) powders, which were prepared with an industrial binder through three different routes: wet granulation, melt granulation and melt granulation with a suspension. After printing cubic samples and tensile test specimens on a commercial fused deposition modelling (FDM) printer, the properties of the resulting green-body and sintered parts were investigated. The green-body mechanical values are compared with results from commercially available filaments. Mixing the binder with the alumina powder and surfactant in a suspension produces the lowest viscosity and the best elongation at break.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart