Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Herkert, Robin"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Dictionary-based online-adaptive structure-preserving model order reduction for parametric Hamiltonian systems
    (2024) Herkert, Robin; Buchfink, Patrick; Haasdonk, Bernard
    Classical model order reduction (MOR) for parametric problems may become computationally inefficient due to large sizes of the required projection bases, especially for problems with slowly decaying Kolmogorov n -widths. Additionally, Hamiltonian structure of dynamical systems may be available and should be preserved during the reduction. In the current presentation, we address these two aspects by proposing a corresponding dictionary-based, online-adaptive MOR approach. The method requires dictionaries for the state-variable, non-linearities, and discrete empirical interpolation (DEIM) points. During the online simulation, local basis extensions/simplifications are performed in an online-efficient way, i.e., the runtime complexity of basis modifications and online simulation of the reduced models do not depend on the full state dimension. Experiments on a linear wave equation and a non-linear Sine-Gordon example demonstrate the efficiency of the approach.
  • Thumbnail Image
    ItemOpen Access
    Greedy kernel methods for approximating breakthrough curves for reactive flow from 3D porous geometry data
    (2024) Herkert, Robin; Buchfink, Patrick; Wenzel, Tizian; Haasdonk, Bernard; Toktaliev, Pavel; Iliev, Oleg
    We address the challenging application of 3D pore scale reactive flow under varying geometry parameters. The task is to predict time-dependent integral quantities, i.e., breakthrough curves, from the given geometries. As the 3D reactive flow simulation is highly complex and computationally expensive, we are interested in data-based surrogates that can give a rapid prediction of the target quantities of interest. This setting is an example of an application with scarce data, i.e., only having a few available data samples, while the input and output dimensions are high. In this scarce data setting, standard machine learning methods are likely to fail. Therefore, we resort to greedy kernel approximation schemes that have shown to be efficient meshless approximation techniques for multivariate functions. We demonstrate that such methods can efficiently be used in the high-dimensional input/output case under scarce data. Especially, we show that the vectorial kernel orthogonal greedy approximation (VKOGA) procedure with a data-adapted two-layer kernel yields excellent predictors for learning from 3D geometry voxel data via both morphological descriptors or principal component analysis.
  • Thumbnail Image
    ItemOpen Access
    Improved a posteriori error bounds for reduced port-Hamiltonian systems
    (2024) Rettberg, Johannes; Wittwar, Dominik; Buchfink, Patrick; Herkert, Robin; Fehr, Jörg; Haasdonk, Bernard
    Projection-based model order reduction of dynamical systems usually introduces an error between the high-fidelity model and its counterpart of lower dimension. This unknown error can be bounded by residual-based methods, which are typically known to be highly pessimistic in the sense of largely overestimating the true error. This work applies two improved error bounding techniques, namely (a)  a hierarchical error bound and (b)  an error bound based on an auxiliary linear problem , to the case of port-Hamiltonian systems. The approaches rely on a secondary approximation of (a) the dynamical system and (b) the error system. In this paper, these methods are adapted to port-Hamiltonian systems. The mathematical relationship between the two methods is discussed both theoretically and numerically. The effectiveness of the described methods is demonstrated using a challenging three-dimensional port-Hamiltonian model of a classical guitar with fluid–structure interaction.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart