Browsing by Author "Hertle, Sebastian"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Comparison of electrochemically deposited Bi and Sn catalysts onto gas diffusion electrodes for the electrochemical CO2 reduction reaction to formate(2023) Manolova, Mila; Hildebrand, Joachim; Hertle, Sebastian; Sörgel, Şeniz; Kassner, Holger; Klemm, EliasIn this publication, we report about the selectivity and stability of bismuth (Bi)- and tin (Sn)-based electrocatalysts for the electrochemical CO2 reduction reaction (eCO2RR) for formate production. Bismuth and tin were successfully electrodeposited using the pulse plating technique on top of and inside of the gas diffusion layers (GDLs). The distribution of the catalyst throughout the thickness of the gas diffusion electrodes (GDEs) was investigated by using scanning electron microscopy and computer tomography; it was found that the catalyst morphology determines the performance of the electrode. Inhomogeneous deposits, with their enlarged catalyst surface area, provide more active centres for the eCO2RR, resulting in increased Faraday efficiency (FE) for formate. The initial electrochemical characterisation tests of the bismuth- and tin-loaded GDEs were carried out under laboratory operating conditions at an industrially relevant current density of 200 mA·cm-2; complete Sn dissolution with a subsequent deformation of the GDL was observed. In contrast to these results, no leaching of the electrodeposited Bi catalyst was observed. An FE of 94.2% towards formate was achieved on these electrodes. Electrodes based on an electrodeposited Bi catalyst on an in-house prepared GDL are stable after 23 h time-on-stream at 200 mA·cm-2 and have very good selectivity for formate.Item Open Access Investigating the long-term kinetics of Pd nanoparticles prepared from microemulsions and the Lindlar catalyst for selective hydrogenation of 3-hexyn-1-ol(2024) Tari, Faeze; Hertle, Sebastian; Wang, Hongguang; Fischer, Julian; Aken, Peter A. van; Sottmann, Thomas; Klemm, Elias; Traa, YvonneThe effect of non-saturated corner and edge sites of Pd particles on the long-term selectivity of cis-3-hexen-1-ol in the hydrogenation of 3-hexyn-1-ol was studied in this work. Non-supported Pd agglomerates were synthesized through the microemulsion synthesis route and used at nalkynol/APdratios between 0.08 and 21 mol/m2for the catalytic conversion of 3-hexyn-1-ol for 20 h. The selectivity of the cis-hexenol product increased by reducing the quantity of Pd catalytic sites (increasing the nalkynol/APdratio) without introducing any modifier or doping agent to poison the nonselective sites. Then, Pd aggregates with fused primary particles and, thus, fewer corner and edge sites were produced through thermal sintering of the agglomerates at 473-723 K. By comparing the catalytic performance of the agglomerates and aggregates, it was observed that at a rather similar kinetic behavior (99.99% conversion and 85-89% selectivity to cis-hexenol), the sintered aggregates could stay selective despite a catalytic surface area about seven times larger. This emphasizes the role of low-coordinated edge and corner sites on the final selectivity of the cis product and demonstrates that thermal sintering allows the number of non-selective sites to be reduced without any need for toxic or organic doping agents or modifiers.