Browsing by Author "Hildebrand, Felix Eberhard"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Variational multifield modeling of the formation and evolution of laminate microstructure(2013) Hildebrand, Felix Eberhard; Miehe, Christian (Prof. Dr.-Ing.)The optimization of material properties and the design of new materials with tailored material behavior are among the greatest challenges in the field of computational continuum mechanics. Since the macroscopic material behavior of many technically relevant materials is very closely linked to their microstructure, a profound physical and mathematical understanding and a reliable computational prediction of the formation and evolution of this microstructure is the necessary basis for any optimization or material design. In this work, we focus on the physical and mathematical understanding and the modeling and simulation of laminate microstructure and use the modeling framework of gradient-extended standard-dissipative solids to construct a phase field model for martensitic laminate microstructure in two-variant martensitic CuAlNi and a gradient crystal plasticity model for laminate deformation microstructure in Copper with two active slip systems on the same slip plane. We derive rate- and incremental-variational as well as finite element formulations for the two models and carry out numerical simulations. Basis for our modeling are the modeling framework of gradient-extended standard-dissipative solids on the one hand, and the continuum theory of non-material sharp interfaces with interface energy on the other hand, from which we derive the condition of kinematic compatibility, jump conditions in analogy to the balance equations and the dissipation postulate for the moving interface. We consider the variational origin of the formation of laminate microstructure and identify gradient-extended modeling approaches as the suitable choice for the modeling of the formation and dissipative evolution of laminate microstructure with interface energy. Based on these considerations, we propose a phase field model for the formation and evolution of laminate microstructure in two-variant martensitic CuAlNi that is based on the variational smooth approximation of sharp topologies and contains a coherence-dependent interface energy. We show that an internal mixing approach for the bulk energy allows a clear separation of interface and bulk energy and that the model is capable of predicting the formation and dissipative evolution of martensitic laminate microstructure and size effects. Furthermore, we propose a gradient crystal plasticity model for Copper with two active slip systems on the same slip plane that allows a prediction of both the formation and evolution of plastic laminate microstructure and incorporates the effect of geometrically necessary dislocations (GNDs). The model contains a biquadratic non-convex latent hardening function and a gradient contribution based on the dislocation density tensor. The evolution equations of the plastic slips and the accumulated plastic slips are obtained by use of a rate regularization that makes use of the approximation of |x| as a*ln(cosh(x/a)) for a<<1. The model is shown to be capable of predicting the formation and evolution of deformation laminate microstructure together with length-scale effects related to GNDs.