Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Hirche, Manuel"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Application and extension of a super resolution physics-informed convolutional neural network to groundwater modelling
    (2023) Hirche, Manuel
    The computational effort of a simulation can be reduced by running simulations on a coarse grid and interpolating to a fine one. This interpolation can be done using data-driven neural networks, called super-resolution. To minimize the need to perform expensive simulations to create the datasets required for training, physics-informed neural networks (PINNs) add a physical error term to the learning process. In this work, we extend and apply a super-resolution PINN approach to a groundwater simulation with heat pumps. We extend an existing network model for flow velocity and pressure to include temperature and permeability of the soil and derive a corresponding error term. The model is trained on a data set from a simulation with different pressures and permeabilities. The results are compared with a data-driven network and bicubic interpolation. We find that both neural networks significantly outperform bicubic interpolation, whereas the PINN approach achieves slightly better results than the data-driven network.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart