Browsing by Author "Hohn, Oliver"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Auslegung und Charakterisierung eines dreidimensionalen Scramjet-Einlaufs mit hohem Verdichtungsverhältnis und variabler Innenkontraktion(2014) Hohn, Oliver; Krämer, Ewald (Prof. Dr.-Ing.)Diese Arbeit als Bestandteil des Graduiertenkollegs GRK-1095 „Aero-thermodynamische Auslegung eines Scramjet-Antriebssystems für zukünftige Raumtransportsysteme“ der Deutschen Forschungsgemeinschaft (DFG) befasst sich mit Untersuchungen an Scramjet-Einläufen mit hohen Verdichtungsverhältnissen, wobei der Schwerpunkt darin lag, den Übergang von vormals vorherrschenden zweidimensionalen zu dreidimensionalen Geometrien zu erreichen. Dazu wurde zunächst der bestehende zweidimensionale Doppelrampen-Einlauf GK-01 der ersten Leitkonfiguration des Graduiertenkollegs modifiziert, um mit diesem Erkenntnisse über Aspekte zu erlangen, auf die bei der Auslegung einer neuen, vollständig drei-dimensionalen Einlaufgeometrie besonderes Augenmerk gelegt werden muss. Dies betraf insbesondere die aerodynamischen und aerothermodynamischen Auswirkungen durch zusätzliche Seitenwandkompression sowie Veränderungen beim Innenkontraktionsverhältnis des Einlaufs. Basierend auf diesen Erkenntnissen wurde mittels einer CFD-Parameterstudie die Einlaufgeometrie der neuen dreidimensionalen Gesamtkonfiguration des Graduiertenkollegs festgelegt. Das Betriebsverhalten des auf Basis dieser Parameterstudie entwickelten und gefertigten Einlaufmodells GK-3D wurde anschließend im Hyperschallwindkanal H2K der Abteilung Überschall- und Hyperschalltechnologien des DLR in Köln eingehend an unterschiedlichen Betriebspunkten und bei verschiedenen Bedingungen experimentell untersucht. Die Einlaufströmung wurde in den Windkanalversuchen mit Strömungsvisualisierung durch Schattenaufnahmen und Wand- und Pitotdruckmessungen erfasst. Für das neu ausgelegte GK-3D-Modell wurde ein Druckmessrechen entwickelt, der neben Pitotröhrchen auch über statische Drucksonden verfügt. Zudem wurde der Massenstrom mit einer Drossel gemessen, mit der auch der Brennkammergegendruck variiert wurde, um die Grenzen des Betriebsbereichs des Einlaufs zu ermitteln. Die Wärmelasten auf den externen Verdichtungsrampen wurden mittels Infrarot-Thermografie bestimmt. Die zusätzliche Seitenwandkompression im modifizierten 2D-Einlauf verursachte starke Änderungen der externen Strömung, die das Startverhalten des Einlaufs negativ beeinflussten. Dadurch war eine optimale Anpassung der Lippenposition an die veränderte Strömungsstruktur nicht möglich, so dass mit dieser Art der Seitenwandkompression, im Gegensatz zu zusätzlichen seitlichen Kompressionskeilen im internen Strömungskanal, aufgrund des größeren Spillage-Massenstroms keine bedeutend höhere Verdichtung erzielt werden konnte. Die Eckenwirbel waren bei zusätzlicher Seitenwandkompression deutlich stärker und wurden durch die Interaktion mit dem zweiten Rampenstoß nochmals enorm verstärkt, wodurch die Grenzschichten in weiten Bereichen der externen Rampen ablösten. Im 2D-Fall und bei interner Seitenwandkompression war es möglich, die Innenkontraktion deutlich zu erhöhen und durch den zusätzlich eingefangenen Massenstrom die Effizienz zu steigern. Zur Untersuchung des Betriebsverhaltens des neuen 3D-Einlaufs wurden das Startverhalten, der Einfluss der Innenkontraktion, der Reynoldszahl und die Änderung der Flugbahnwinkel betrachtet. Das Startverhalten stimmte dabei gut mit Erfahrungswerten von anderen 3D-Einläufen überein. Die Innenkontraktion hatte keine entscheidenden Auswirkungen auf das Strömungsfeld und das Leistungsvermögen des Einlaufs. Die Grenzen des Betriebsbereichs verschoben sich mit steigender Innenkontraktion jedoch zu höheren Druckverhältnissen. Die Stoß-Grenzschicht-Interaktion des Rampenstoßes mit der Haubenoberfläche, die bei Fällen mit hoher Innenverdichtung auftritt, erwies sich nicht als problematisch. Dies war auch bereits bei den Voruntersuchungen mit dem modifizierten 2D-Einlauf der Fall. Größere Auswirkungen ergaben sich durch Flugbahnwinkel, welche die effektiven Kompressionswinkel der Rampe bzw. der Seitenwände und den Fangquerschnitt verändern und damit auch die Druck- und Massenstromverhältnisse. Hinsichtlich eines sicheren Betriebs sind vor allem hohe positive Anstellwinkel als kritisch einzustufen, da die Druck- und Massenstromverhältnisse derart stark absinken, dass die Zündung und Stabilität der Verbrennung eventuell nicht mehr gewährleistet sind. Die Variation der Reynoldszahl lieferte nur kleine Einflüsse auf das Leistungsvermögen und die Effizienz des Einlaufs im ungedrosselten Betriebsfall. Die Betriebsgrenzen lagen bei hoher Reynoldszahl jedoch deutlich niedriger, das Blockieren der Einlaufströmung passierte viel schneller (d.h. bei niedrigeren Brennkammergegendrücken). Mit IR-Thermografie konnten Erkenntnisse über die Höhe der maximalen auftretenden Wärmelasten und die Orte, an denen sie auftreten, erlangt werden. Diese und besonders auch deren Position änderten sich stark bei Variation der Flugbedingung, vor allem durch Flugbahnwinkel. Es konnten daraus jedoch keine genaueren Einblicke in die Strömungsstruktur auf den externen Rampen, vor allem das Transitionsverhalten, gewonnen werden. Zudem wurden alternative, analytische Auslegeverfahren basierend auf Streamline-Tracing betrachtet, um die hier angewandte und mit hohem Arbeitsaufwand verbundene Auslegungsstrategie einer Parameterstudie effizienter zu gestalten. Dazu wurden ein REST-Einlauf und ein Einlauf auf Basis einer Busemannströmung entwickelt, denen jeweils die gleichen Flächenverhältnisse wie beim GK-3D-Einlauf zugrunde liegen. Das Auslegungsverfahren für REST-Einläufe erwies sich dabei als nur sehr eingeschränkt tauglich für die vorliegenden hohen Verdichtungsverhältnisse, da die so erlangten Einlaufgeometrien extrem lang werden und somit ungeeignet für das hypothetische Flugexperiment des GRK-Teilprojekts C1 wären. Basierend auf Busemann-Strömungen war es möglich, Einlaufgeometrien zu erlangen, die zwar immer noch länger als der GK-3D-Einlauf waren, aber deutlich kompakter gestaltet werden konnten als die REST-Einläufe. Mit diesen Einläufen konnten zudem bedeutend höhere Wirkungsgrade erzielt werden als mit den anderen Konfigurationen. Jedoch lag deren Leistungsvermögen in Form der Verdichtungs- und Temperaturverhältnisse geringfügig niedriger als das des 3D-Einlaufs.