Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Holm, Christian"

Filter results by typing the first few letters
Now showing 1 - 16 of 16
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    CO2-induced drastic decharging of dielectric surfaces in aqueous suspensions
    (2024) Vogel, Peter; Beyer, David; Holm, Christian; Palberg, Thomas
    We study the influence of airborne CO2 on the charge state of carboxylate stabilized polymer latex particles suspended in aqueous electrolytes. We combine conductometric experiments interpreted in terms of Hessinger's conductivity model with Poisson-Boltzmann cell (PBC) model calculations with charge regulation boundary conditions. Without CO2, a minority of the weakly acidic surface groups are dissociated and only a fraction of the total number of counter-ions actually contribute to conductivity. The remaining counter-ions exchange freely with added other ions like Na+, K+ or Cs+. From the PBC-calculations we infer a corresponding pKa of 4.26 as well as a renormalized charge in reasonably good agreement with the number of freely mobile counter-ions. Equilibration of salt- and CO2-free suspensions against ambient air leads to a drastic de-charging, which exceeds by far the expected effects of to dissolved CO2 and its dissociation products. Further, no counter-ion-exchange is observed. To reproduce the experimental findings, we have to assume an effective pKa of 6.48. This direct influence of CO2 on the state of surface group dissociation explains our recent finding of a CO2-induced decrease of the ζ-potential and supports the suggestion of an additional charge regulation caused by molecular CO2. Given the importance of charged surfaces in contact with aqueous electrolytes, we anticipate that our observations bear substantial theoretical challenges and important implications for applications ranging from desalination to bio-membranes.
  • Thumbnail Image
    ItemOpen Access
    Efficient algorithms for electrostatic interactions including dielectric contrasts
    (2013) Arnold, Axel; Breitsprecher, Konrad; Fahrenberger, Florian; Kesselheim, Stefan; Lenz, Olaf; Holm, Christian
    Coarse grained models of soft matter are usually combined with implicit solvent models that take the electrostatic polarizability into account via a dielectric background. In biophysical or nanoscale simulations that include water, this constant can vary greatly within the system. Performing molecular dynamics or other simulations that need compute exact electrostatic interactions between charges in those systems is computationally demanding. We review here several algorithms developped by us that perform exactly this task. For planar dielectric surfaces in partial periodic boundary conditions, the arising image charges can be either treated with the MMM2D algorithm in a very efficient and accurate way, or with the ELC term that enables the user to use his favorite 3D periodic Coulomb solver . Arbitrarily shaped interfaces can be dealt with using induced surface charges with the ICC algorithm. Finally, the local electrostatics algorithm MEMD (Maxwell Equations Molecular Dynamics) allows even to employ a smoothly varying dielectric constant in the systems. We introduce the concepts of these three algorithms, and an extension for the inclusion of boundaries that are to be held fixed at constant potential (metal conditions). For each method, we present a showcase application to highlight the importance of dielectric interfaces.
  • Thumbnail Image
    ItemOpen Access
    An extensible lattice Boltzmann method for viscoelastic flows : complex and moving boundaries in Oldroyd-B fluids
    (2021) Kuron, Michael; Stewart, Cameron; de Graaf, Joost; Holm, Christian
    Most biological fluids are viscoelastic, meaning that they have elastic properties in addition to the dissipative properties found in Newtonian fluids. Computational models can help us understand viscoelastic flow, but are often limited in how they deal with complex flow geometries and suspended particles. Here, we present a lattice Boltzmann solver for Oldroyd-B fluids that can handle arbitrarily shaped fixed and moving boundary conditions, which makes it ideally suited for the simulation of confined colloidal suspensions. We validate our method using several standard rheological setups and additionally study a single sedimenting colloid, also finding good agreement with the literature. Our approach can readily be extended to constitutive equations other than Oldroyd-B. This flexibility and the handling of complex boundaries hold promise for the study of microswimmers in viscoelastic fluids.
  • Thumbnail Image
    ItemOpen Access
    How to speed up ion transport in nanopores
    (2020) Breitsprecher, Konrad; Janssen, Mathijs; Srimuk, Pattarachai; Mehdi, B. Layla; Presser, Volker; Holm, Christian; Kondrat, Svyatoslav
    Electrolyte-filled subnanometre pores exhibit exciting physics and play an increasingly important role in science and technology. In supercapacitors, for instance, ultranarrow pores provide excellent capacitive characteristics. However, ions experience difficulties in entering and leaving such pores, which slows down charging and discharging processes. In an earlier work we showed for a simple model that a slow voltage sweep charges ultranarrow pores quicker than an abrupt voltage step. A slowly applied voltage avoids ionic clogging and co-ion trapping - a problem known to occur when the applied potential is varied too quickly - causing sluggish dynamics. Herein, we verify this finding experimentally. Guided by theoretical considerations, we also develop a non-linear voltage sweep and demonstrate, with molecular dynamics simulations, that it can charge a nanopore even faster than the corresponding optimized linear sweep. For discharging we find, with simulations and in experiments, that if we reverse the applied potential and then sweep it to zero, the pores lose their charge much quicker than they do for a short-circuited discharge over their internal resistance. Our findings open up opportunities to greatly accelerate charging and discharging of subnanometre pores without compromising the capacitive characteristics, improving their importance for energy storage, capacitive deionization, and electrochemical heat harvesting.
  • Thumbnail Image
    ItemOpen Access
    Hybrid molecules consisting of lysine dendrons with several hydrophobic tails : a SCF study of self-assembling
    (2023) Shavykin, Oleg V.; Mikhtaniuk, Sofia E.; Fatullaev, Emil I.; Neelov, Igor M.; Leermakers, Frans A. M.; Brito, Mariano E.; Holm, Christian; Borisov, Oleg V.; Darinskii, Anatoly A.
    In this article, we used the numerical self-consistent field method of Scheutjens-Fleer to study the micellization of hybrid molecules consisting of one polylysine dendron with charged end groups and several linear hydrophobic tails attached to its root. The main attention was paid to spherical micelles and the determination of the range of parameters at which they can appear. A relationship has been established between the size and internal structure of the resulting spherical micelles and the length and number of hydrophobic tails, as well as the number of dendron generations. It is shown that the splitting of the same number of hydrophobic monomers from one long tail into several short tails leads to a decrease in the aggregation number and, accordingly, the number of terminal charges in micelles. At the same time, it was shown that the surface area per dendron does not depend on the number of hydrophobic monomers or tails in the hybrid molecule. The relationship between the structure of hybrid molecules and the electrostatic properties of the resulting micelles has also been studied. It is found that the charge distribution in the corona depends on the number of dendron generations G in the hybrid molecule. For a small number of generations (up to G=3), a standard double electric layer is observed. For a larger number of generations (G=4), the charges of dendrons in the corona are divided into two populations: in the first population, the charges are in the spherical layer near the boundary between the micelle core and shell, and in the second population, the charges are near the periphery of the spherical shell. As a result, a part of the counterions is localized in the wide region between them. These results are of potential interest for the use of spherical dendromicelles as nanocontainers for drug delivery.
  • Thumbnail Image
    ItemOpen Access
    Implicit-solvent coarse-grained simulations of linear-dendritic block copolymer micelles
    (2023) Brito, Mariano E.; Mikhtaniuk, Sofia E.; Neelov, Igor M.; Borisov, Oleg V.; Holm, Christian
    The design of nanoassemblies can be conveniently achieved by tuning the strength of the hydrophobic interactions of block copolymers in selective solvents. These block copolymer micelles form supramolecular aggregates, which have attracted great attention in the area of drug delivery and imaging in biomedicine due to their easy-to-tune properties and straightforward large-scale production. In the present work, we have investigated the micellization process of linear–dendritic block copolymers in order to elucidate the effect of branching on the micellar properties. We focus on block copolymers formed by linear hydrophobic blocks attached to either dendritic neutral or charged hydrophilic blocks. We have implemented a simple protocol for determining the equilibrium micellar size, which permits the study of linear–dendritic block copolymers in a wide range of block morphologies in an efficient and parallelizable manner. We have explored the impact of different topological and charge properties of the hydrophilic blocks on the equilibrium micellar properties and compared them to predictions from self-consistent field theory and scaling theory. We have found that, at higher degrees of branching in the corona and for short polymer chains, excluded volume interactions strongly influence the micellar aggregation as well as their effective charge.
  • Thumbnail Image
    ItemOpen Access
    Influence of bacterial swimming and hydrodynamics on attachment of phages
    (2024) Lohrmann, Christoph; Holm, Christian; Datta, Sujit S.
    Bacteriophages (“phages”) are viruses that infect bacteria. Since they do not actively self-propel, phages rely on thermal diffusion to find target cells - but can also be advected by fluid flows, such as those generated by motile bacteria themselves in bulk fluids. How does the flow field generated by a swimming bacterium influence how it encounters phages? Here, we address this question using coupled molecular dynamics and lattice Boltzmann simulations of flagellated bacteria swimming through a bulk fluid containing uniformly-dispersed phages. We find that while swimming increases the rate at which phages attach to both the cell body and flagellar propeller, hydrodynamic interactions strongly suppress this increase at the cell body, but conversely enhance this increase at the flagellar bundle. Our results highlight the pivotal influence of hydrodynamics on the interactions between bacteria and phages, as well as other diffusible species, in microbial environments.
  • Thumbnail Image
    ItemOpen Access
    Machine learning-driven investigation of the structure and dynamics of the BMIM-BF4 room temperature ionic liquid
    (2024) Zills, Fabian; Schäfer, Moritz René; Tovey, Samuel; Kästner, Johannes; Holm, Christian
    Room-temperature ionic liquids are an exciting group of materials with the potential to revolutionize energy storage. Due to their chemical structure and means of interaction, they are challenging to study computationally. Classical descriptions of their inter- and intra-molecular interactions require time intensive parametrization of force-fields which is prone to assumptions. While ab initio molecular dynamics approaches can capture all necessary interactions, they are too slow to achieve the time and length scales required. In this work, we take a step towards addressing these challenges by applying state-of-the-art machine-learned potentials to the simulation of 1-butyl-3-methylimidazolium tetrafluoroborate. We demonstrate a learning-on-the-fly procedure to train machine-learned potentials from single-point density functional theory calculations before performing production molecular dynamics simulations. Obtained structural and dynamical properties are in good agreement with computational and experimental references. Furthermore, our results show that hybrid machine-learned potentials can contribute to an improved prediction accuracy by mitigating the inherent shortsightedness of the models. Given that room-temperature ionic liquids necessitate long simulations to address their slow dynamics, achieving an optimal balance between accuracy and computational cost becomes imperative. To facilitate further investigation of these materials, we have made our IPSuite-based training and simulation workflow publicly accessible, enabling easy replication or adaptation to similar systems.
  • Thumbnail Image
    ItemOpen Access
    MDSuite : comprehensive post-processing tool for particle simulations
    (2023) Tovey, Samuel; Zills, Fabian; Torres-Herrador, Francisco; Lohrmann, Christoph; Brückner, Marco; Holm, Christian
    Particle-Based (PB) simulations, including Molecular Dynamics (MD), provide access to system observables that are not easily available experimentally. However, in most cases, PB data needs to be processed after a simulation to extract these observables. One of the main challenges in post-processing PB simulations is managing the large amounts of data typically generated without incurring memory or computational capacity limitations. In this work, we introduce the post-processing tool: MDSuite. This software, developed in Python, combines state-of-the-art computing technologies such as TensorFlow, with modern data management tools such as HDF5 and SQL for a fast, scalable, and accurate PB data processing engine. This package, built around the principles of FAIR data, provides a memory safe, parallelized, and GPU accelerated environment for the analysis of particle simulations. The software currently offers 17 calculators for the computation of properties including diffusion coefficients, thermal conductivity, viscosity, radial distribution functions, coordination numbers, and more. Further, the object-oriented framework allows for the rapid implementation of new calculators or file-readers for different simulation software. The Python front-end provides a familiar interface for many users in the scientific community and a mild learning curve for the inexperienced. Future developments will include the introduction of more analysis associated with ab-initio methods, colloidal/macroscopic particle methods, and extension to experimental data.
  • Thumbnail Image
    ItemOpen Access
    PDADMAC/PSS oligoelectrolyte multilayers : internal structure and hydration properties at early growth stages from atomistic simulations
    (2020) Sánchez, Pedro A.; Vögele, Martin; Smiatek, Jens; Qiao, Baofu; Sega, Marcello; Holm, Christian
    We analyze the internal structure and hydration properties of poly(diallyl dimethyl ammonium chloride)/poly(styrene sulfonate sodium salt) oligoelectrolyte multilayers at early stages of their layer-by-layer growth process. Our study is based on large-scale molecular dynamics simulations with atomistic resolution that we presented recently [Sánchez et al., Soft Matter 2019, 15, 9437], in which we produced the first four deposition cycles of a multilayer obtained by alternate exposure of a flat silica substrate to aqueous electrolyte solutions of such polymers at 0.1M of NaCl. In contrast to any previous work, here we perform a local structural analysis that allows us to determine the dependence of the multilayer properties on the distance to the substrate. We prove that the large accumulation of water and ions next to the substrate observed in previous overall measurements actually decreases the degree of intrinsic charge compensation, but this remains as the main mechanism within the interface region. We show that the range of influence of the substrate reaches approximately 3 nm, whereas the structure of the outer region is rather independent from the position. This detailed characterization is essential for the development of accurate mesoscale models able to reach length and time scales of technological interest.
  • Thumbnail Image
    ItemOpen Access
    Permeability estimation of regular porous structures : a benchmark for comparison of methods
    (2021) Wagner, Arndt; Eggenweiler, Elissa; Weinhardt, Felix; Trivedi, Zubin; Krach, David; Lohrmann, Christoph; Jain, Kartik; Karadimitriou, Nikolaos; Bringedal, Carina; Voland, Paul; Holm, Christian; Class, Holger; Steeb, Holger; Rybak, Iryna
    The intrinsic permeability is a crucial parameter to characterise and quantify fluid flow through porous media. However, this parameter is typically uncertain, even if the geometry of the pore structure is available. In this paper, we perform a comparative study of experimental, semi-analytical and numerical methods to calculate the permeability of a regular porous structure. In particular, we use the Kozeny-Carman relation, different homogenisation approaches (3D, 2D, very thin porous media and pseudo 2D/3D), pore-scale simulations (lattice Boltzmann method, Smoothed Particle Hydrodynamics and finite-element method) and pore-scale experiments (microfluidics). A conceptual design of a periodic porous structure with regularly positioned solid cylinders is set up as a benchmark problem and treated with all considered methods. The results are discussed with regard to the individual strengths and limitations of the used methods. The applicable homogenisation approaches as well as all considered pore-scale models prove their ability to predict the permeability of the benchmark problem. The underestimation obtained by the microfluidic experiments is analysed in detail using the lattice Boltzmann method, which makes it possible to quantify the influence of experimental setup restrictions.
  • Thumbnail Image
    ItemOpen Access
    The presence of a wall enhances the probability for ring‐closing metathesis : insights from classical polymer theory and atomistic simulations
    (2020) Tischler, Ingo; Schlaich, Alexander; Holm, Christian
    The probability distribution of chain ends meeting when one end of the polymer is fixed to a certain distance to a reflecting wall is investigated. For an ideal polymer chain the probability distribution can be evaluated analytically via classic polymer theory. These analytical predictions are compared to atomistic MD simulations of one tethered alkane chain close to the wall. The results demonstrate that a confining wall can lead to a significant increase in the return probability for the chain ends, and thus, can increase the occurrence of ring‐closing reactions. It is further demonstrated that the excess return probability shows a maximum at a certain distance, thereby yielding an optimal catalyst position in the ring‐closing reaction.
  • Thumbnail Image
    ItemOpen Access
    Renormalized charge and dielectric effects in colloidal interactions : a numerical solution of the nonlinear Poisson-Boltzmann equation for unknown boundary conditions
    (2023) Schlaich, Alexander; Tyagi, Sandeep; Kesselheim, Stefan; Sega, Marcello; Holm, Christian
    The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, introduced more than 70 years ago, is a hallmark of colloidal particle modeling. For highly charged particles in the dilute regime, it is often supplemented by Alexander’s prescription (Alexander et al. in J Chem Phys 80:5776, 1984) for using a renormalized charge. Here, we solve the problem of the interaction between two charged colloids at finite ionic strength, including dielectric mismatch effects, using an efficient numerical scheme to solve the nonlinear Poisson-Boltzmann (NPB) equation with unknown boundary conditions. Our results perfectly match the analytical predictions for the renormalized charge by Trizac and coworkers (Aubouy et al. in J Phys A 36:5835, 2003). Moreover, they allow us to reinterpret previous molecular dynamics (MD) simulation results by Kreer et al. (Phys Rev E 74:021401, 2006), rendering them now in agreement with the expected behavior. We furthermore find that the influence of polarization becomes important only when the Debye layers overlap significantly.
  • Thumbnail Image
    ItemOpen Access
    The solvation and ion condensation properties for sulfonated polyelectrolytes in different solvents : a computational study
    (2014) Smiatek, Jens; Wohlfarth, Andreas; Holm, Christian
    In contrast to the broad knowledge about aqueous polyelectrolyte solutions, less is known about the properties in aprotic and apolar solvents. We therefore investigate the behavior of sulfonated polyelectrolytes in sodium form in the presence of different solvents via all-atom molecular dynamics simulations. The results clearly reveal strong variations in ion condensation constants and polyelectrolyte conformations for different solvents like water, dimethyl sulfoxide (DMSO) and chloroform. The binding free energies of the solvent contacts with the polyelectrolyte groups validate the influence of different solvent qualities. With regard to the ion condensation behavior, the numerical findings show that the explicit values for the condensation constants depend on the preferential binding coefficient as derived by the evaluation of Kirkwood--Buff integrals. Surprisingly, the smallest ion condensation constant is observed for DMSO compared to water, whereas in the presence of chloroform, virtually no free ions are present, which is in good agreement to the donor number concept. In contrast to the results for the low condensation constants, the sodium conductivity in DMSO is smaller compared to water. We are able to relate this result to the observed smaller diffusion coefficient for the sodium ions in DMSO.
  • Thumbnail Image
    ItemOpen Access
    Training robust and generalizable quantum models
    (2024) Berberich, Julian; Fink, Daniel; Pranjić, Daniel; Tutschku, Christian; Holm, Christian
  • Thumbnail Image
    ItemOpen Access
    Umgang mit Forschungssoftware an der Universität Stuttgart
    (2020) Flemisch, Bernd; Hermann, Sibylle; Holm, Christian; Mehl, Miriam; Reina, Guido; Uekermann, Benjamin; Boehringer, David; Ertl, Thomas; Grad, Jean-Noël; Iglezakis, Dorothea; Jaust, Alexander; Koch, Timo; Seeland, Anett; Weeber, Rudolf; Weik, Florian; Weishaupt, Kilian
    Wir empfehlen die Einrichtung einer Organisationseinheit Forschungssoftware-Entwicklung an der Universität Stuttgart und eines daran angegliederten Stellenpools von Research Software Engineers (RSEs). Dazu schlagen wir Maßnahmen zur Schaffung und Finanzierung entsprechender neuer RSE-Stellen, zur Integration bestehender Stellen sowie zur Gewinnung und Förderung geeigneter Personen vor. RSEs sind Personen, die sich um Konzeption, Organisation, Implementierung, Testen, Dokumentation und Wartung von Forschungssoftware kümmern. Die institutionelle Förderung von Forschungssoftware-Entwicklung ist notwendig, da die Bedeutung von Software für die Forschung und Anforderungen an die entsprechende Software, u.a. durch die DFG, stetig zunimmt.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart