Browsing by Author "Hopp-Hirschler, Manuel"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Constitutive correlations for mass transport in fibrous media based on asymptotic homogenization(2023) Maier, Lukas; Kufferath-Sieberin, Lars; Pauly, Leon; Hopp-Hirschler, Manuel; Gresser, Götz T.; Nieken, UlrichMass transport in textiles is crucial. Knowledge of effective mass transport properties of textiles can be used to improve processes and applications where textiles are used. Mass transfer in knitted and woven fabrics strongly depends on the yarn used. In particular, the permeability and effective diffusion coefficient of yarns are of interest. Correlations are often used to estimate the mass transfer properties of yarns. These correlations commonly assume an ordered distribution, but here we demonstrate that an ordered distribution leads to an overestimation of mass transfer properties. We therefore address the impact of random ordering on the effective diffusivity and permeability of yarns and show that it is important to account for the random arrangement of fibers in order to predict mass transfer. To do this, Representative Volume Elements are randomly generated to represent the structure of yarns made from continuous filaments of synthetic materials. Furthermore, parallel, randomly arranged fibers with a circular cross-section are assumed. By solving the so-called cell problems on the Representative Volume Elements, transport coefficients can be calculated for given porosities. These transport coefficients, which are based on a digital reconstruction of the yarn and asymptotic homogenization, are then used to derive an improved correlation for the effective diffusivity and permeability as a function of porosity and fiber diameter. At porosities below 0.7, the predicted transport is significantly lower under the assumption of random ordering. The approach is not limited to circular fibers and may be extended to arbitrary fiber geometries.Item Open Access Coupled electrohydrodynamic and thermocapillary instability of multi-phase flows using an incompressible smoothed particle hydrodynamics method(2022) Almasi, Fatemeh; Hopp-Hirschler, Manuel; Hadjadj, Abdellah; Nieken, Ulrich; Safdari Shadloo, MostafaThis paper concerns the study of coupled effects of electrohydrodynamic (EHD) and thermocapillary (TC) on the dynamic behaviour of a single liquid droplet. An incompressible Smoothed Particle Hydrodynamic (ISPH) multiphase model is used to simulate EHD-TC driven flows. The complex hydrodynamic interactions are modeled using the continuum surface force (CSF) method, in which the gradient of the interfacial tension and the Marangoni forces are calculated with an approximated error or 0.014% in the calculation of Marangoni force compared to the analytical solutions which is a significant improvement in comparison with previous SPH simulation studies, under the assumption that the thermocapillarity generates sufficiently large stress to allow droplet migration, while the electrohydrodynamic phenomena influences the droplet morphology depending on the electrical and thermal ratios of the droplet and the ambient fluid. This study shows that, when applying a vertical electric field and thermal gradient, the droplet starts to stretch horizontally towards a break-up condition at a high rate of electrical permitivity. The combined effect of thermal gradient and electric field tends to push further the droplet towards the break-up regime. When the thermal gradient and the electric field vector are orthogonal, results show that the droplet deformation would take place more slowly and the Marangoni forces cause the droplet to migrate, while the stretching in the direction of the electric field is not seen to be as strong as in the first case.Item Open Access Modeling of porous polymer membrane formation(2017) Hopp-Hirschler, Manuel; Nieken, Ulrich (Prof. Dr.-Ing.)Porous polymer membranes are used in several separation processes, e.g. in dialysis or in water purification. The morphology of the membrane affects the quality of separation, e.g. selectivity, as well as the mechanical stability of the membrane. To control the morphology of the membrane during the preparation process we first need to understand the mechanism that leads to different pore structures. It is desirable to use a numerical model to predict the pore type and detailed structure. Wet-casting is a very common preparation process for porous polymer membranes where a liquid precipitation agent is used. Herein, a polymer solution and a coagulation bath is brought into contact. After contact the polymer solution is driven into a miscibility gap and starts to phase separate into a polymer lean and a polymer rich phase. Starting from the contact area between polymer solution and coagulation bath a pore structure grows where the polymer rich phase leads to the pore matrix. Although the process is used frequently in the last decades, its mechanism is still not fully understood. Therefore, the motivation in this thesis is to bridge experimental observations from membrane science to theoretical physics where concepts exist to understand the formation of pore structures in porous polymer membranes.