Browsing by Author "Iakutkina, Olga"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Charge degrees of freedom in quasi-two-dimentional organic conductors(2022) Iakutkina, Olga; Dressel, Martin (Prof. Dr.)Item Open Access Dielectric anomaly and charge fluctuations in the non-magnetic dimer Mott insulator λ-(BEDT-STF)2GaCl4(2021) Iakutkina, Olga; Rösslhuber, Roland; Kawamoto, Atsushi; Dressel, MartinThe dimer Mott insulator l-(BEDT-STF)2GaCl4 undergoes no magnetic order down to the lowest temperatures, suggesting the formation of a novel quantum disordered state. Our frequency and temperature-dependent investigations of the dielectric response reveal a relaxor-like behavior below T ≈ 100 K for all three axes, similar to other spin liquid candidates. Optical measurement of the charge-sensitive vibrational mode n27(b1u) identifies a charge disproportionation Dr ≈ 0.04e on the dimer that exists up to room temperature and originates from inequivalent molecules in the weakly coupled dimers. The linewidth of the charge sensitive mode is broader than that of typical organic conductors, supporting the existence of a disordered electronic state.Item Open Access Tuning charge order in (TMTTF)2X by partial anion substitution(2021) Pustogow, Andrej; Dizdarevic, Daniel; Erfort, Sebastian; Iakutkina, Olga; Merkl, Valentino; Untereiner, Gabriele; Dressel, MartinIn the quasi-one-dimensional (TMTTF)2X compounds with effectively quarter-filled bands, electronic charge order is stabilized from the delicate interplay of Coulomb repulsion and electronic bandwidth. The correlation strength is commonly tuned by physical pressure or chemical substitution with stoichiometric ratios of anions and cations. Here, we investigate the charge-ordered state through partial substitution of the anions in (TMTTF)2[AsF6]1-x[SbF6]x with x≈0.3, determined from the intensity of infrared vibrations, which is sufficient to suppress the spin-Peierls state. Our dc transport experiments reveal a transition temperature TCO = 120 K and charge gap ΔCO=430 K between the values of the two parent compounds (TMTTF)2AsF6 and (TMTTF)2SbF6. Upon plotting the two parameters for different (TMTTF)2X, we find a universal relationship between TCO and ΔCO yielding that the energy gap vanishes for transition temperatures TCO≤60 K. While these quantities indicate that the macroscopic correlation strength is continuously tuned, our vibrational spectroscopy results probing the local charge disproportionation suggest that 2δ is modulated on a microscopic level.