Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Jahnke, Timotheus"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Bioinspired structure tailoring of tin oxide based materials for high capacity electrodes
    (2021) Jahnke, Timotheus; Bill, Joachim (Prof. Dr.)
  • Thumbnail Image
    ItemOpen Access
    Highly porous free-standing rGO/SnO2 pseudocapacitive cathodes for high-rate and long-cycling Al-ion batteries
    (2020) Jahnke, Timotheus; Raafat, Leila; Hotz, Daniel; Knöller, Andrea; Diem, Achim Max; Bill, Joachim; Burghard, Zaklina
    Establishing energy storage systems beyond conventional lithium ion batteries requires the development of novel types of electrode materials. Such materials should be capable of accommodating ion species other than Li+, and ideally, these ion species should be of multivalent nature, such as Al3+. Along this line, we introduce a highly porous aerogel cathode composed of reduced graphene oxide, which is loaded with nanostructured SnO2. This binder-free hybrid not only exhibits an outstanding mechanical performance, but also unites the pseudocapacity of the reduced graphene oxide and the electrochemical storage capacity of the SnO2 nanoplatelets. Moreover, the combination of both materials gives rise to additional intercalation sites at their interface, further contributing to the total capacity of up to 16 mAh cm-3 at a charging rate of 2 C. The high porosity (99.9%) of the hybrid and the synergy of its components yield a cathode material for high-rate (up to 20 C) aluminum ion batteries, which exhibit an excellent cycling stability over 10,000 tested cycles. The electrode design proposed here has a great potential to meet future energy and power density demands for advanced energy storage devices.
  • Thumbnail Image
    ItemOpen Access
    Peptide controlled shaping of biomineralized tin(II) oxide into flower-like particles
    (2019) Kilper, Stefan; Jahnke, Timotheus; Wiegers, Katharina; Grohe, Vera; Burghard, Zaklina; Bill, Joachim; Rothenstein, Dirk
    The size and morphology of metal oxide particles have a large impact on the physicochemical properties of these materials, e.g., the aspect ratio of particles affects their catalytic activity. Bioinspired synthesis routes give the opportunity to control precisely the structure and aspect ratio of the metal oxide particles by bioorganic molecules, such as peptides. This study focusses on the identification of tin(II) oxide (tin monoxide, SnO) binding peptides, and their effect on the synthesis of crystalline SnO microstructures. The phage display technique was used to identify the 7-mer peptide SnBP01 (LPPWKLK), which shows a high binding affinity towards crystalline SnO. It was found that the derivatives of the SnBP01 peptide, varying in peptide length and thus in their interaction, significantly affect the aspect ratio and the size dimension of mineralized SnO particles, resulting in flower-like morphology. Furthermore, the important role of the N-terminal leucine residue in the peptide for the strong organic-inorganic interaction was revealed by FTIR investigations. This bioinspired approach shows a facile procedure for the detailed investigation of peptide-to-metal oxide interactions, as well as an easy method for the controlled synthesis of tin(II) oxide particles with different morphologies.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart