Browsing by Author "Jeong, Moonkwang"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A convoy of magnetic millirobots transports endoscopic instruments for minimally‐invasive surgery(2024) Jeong, Moonkwang; Tan, Xiangzhou; Fischer, Felix; Qiu, TianSmall‐scale robots offer significant potential in minimally invasive medical procedures. Due to the nature of soft biological tissues, however, robots are exposed to complex environments with various challenges in locomotion, which is essential to overcome for useful medical tasks. A single mini‐robot often provides insufficient force on slippery biological surfaces to carry medical instruments, such as a fluid catheter or an electrical wire. Here, for the first time, a team of millirobots (TrainBot) is reported to generate around two times higher actuating force than a TrainBot unit by forming a convoy to collaboratively carry long and heavy cargos. The feet of each unit are optimized to increase the propulsive force around three times so that it can effectively crawl on slippery biological surfaces. A human‐scale permanent magnetic set‐up is developed to wirelessly actuate and control the TrainBot to transport heavy and lengthy loads through narrow biological lumens, such as the intestine and the bile duct. The first electrocauterization performed by the TrainBot is demonstrated to relieve a biliary obstruction and open a tunnel for fluid drainage and drug delivery. The developed technology sheds light on the collaborative strategy of small‐scale robots for future minimally invasive surgical procedures.Item Open Access A magnetic millirobot walks on slippery biological surfaces for targeted cargo delivery(2023) Jeong, Moonkwang; Tan, Xiangzhou; Fischer, Felix; Qiu, TianSmall-scale robots hold great potential for targeted cargo delivery in minimally invasive medicine. However, current robots often face challenges in locomoting efficiently on slippery biological tissue surfaces, especially when loaded with heavy cargo. Here, we report a magnetic millirobot that can walk on rough and slippery biological tissues by anchoring itself on the soft tissue surface alternatingly with two feet and reciprocally rotating the body to move forward. We experimentally studied the locomotion, validated it with numerical simulations, and optimized the actuation parameters to fit various terrains and loading conditions. Furthermore, we developed a permanent magnet set-up to enable wireless actuation within a human-scale volume that allows precise control of the millirobot to follow complex trajectories, climb vertical walls, and carry cargo up to four times its own weight. Upon reaching the target location, it performs a deployment sequence to release the liquid drug into tissues. The robust gait of our millirobot on rough biological terrains, combined with its heavy load capacity, makes it a versatile and effective miniaturized vehicle for targeted cargo delivery.Item Open Access Soft liver phantom with a hollow biliary system(2021) Tan, Xiangzhou; Li, Dandan; Jeong, Moonkwang; Yu, Tingting; Ma, Zhichao; Afat, Saif; Grund, Karl-Enrst; Qiu, TianHepatobiliary interventions are regarded as difficult minimally-invasive procedures that require experience and skills of physicians. To facilitate the surgical training, we develop a soft, high-fidelity and durable liver phantom with detailed morphology. The phantom is anatomically accurate and feasible for the multi-modality medical imaging, including computer tomography (CT), ultrasound, and endoscopy. The CT results show that the phantom resembles the detailed anatomy of real livers including the biliary ducts, with a spatial root mean square error (RMSE) of 1.7 ± 0.7 mm and 0.9 ± 0.2 mm for the biliary duct and the liver outer shape, respectively. The sonographic signals and the endoscopic appearance highly mimic those of the real organ. An electric sensing system was developed for the real-time quantitative tracking of the transhepatic puncturing needle. The fabrication method herein is accurate and reproducible, and the needle tracking system offers a robust and general approach to evaluate the centesis outcome.Item Open Access Soft urinary bladder phantom for endoscopic training(2021) Choi, Eunjin; Waldbillig, Frank; Jeong, Moonkwang; Li, Dandan; Goyal, Rahul; Weber, Patricia; Miernik, Arkadiusz; Grüne, Britta; Hein, Simon; Suarez-Ibarrola, Rodrigo; Kriegmair, Maximilian Christian; Qiu, TianBladder cancer (BC) is the main disease in the urinary tract with a high recurrence rate and it is diagnosed by cystoscopy (CY). To train the CY procedures, a realistic bladder phantom with correct anatomy and physiological properties is highly required. Here, we report a soft bladder phantom (FlexBlad) that mimics many important features of a human bladder. Under filling, it shows a large volume expansion of more than 300% with a tunable compliance in the range of 12.2 ± 2.8 - 32.7 ± 5.4 mL cmH2O-1 by engineering the thickness of the bladder wall. By 3D printing and multi-step molding, detailed anatomical structures are represented on the inner bladder wall, including sub-millimeter blood vessels and reconfigurable bladder tumors. Endoscopic inspection and tumor biopsy were successfully performed. A multi-center study was carried out, where two groups of urologists with different experience levels executed consecutive CYs in the phantom and filled in questionnaires. The learning curves reveal that the FlexBlad has a positive effect in the endourological training across different skill levels. The statistical results validate the usability of the phantom as a valuable educational tool, and the dynamic feature expands its use as a versatile endoscopic training platform.