Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Johann, Kai S."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Comparative analysis of the solid conveying of regrind, virgin and powdery polyolefins in single-screw extrusion
    (2022) Johann, Kai S.; Reißing, Adrian; Bonten, Christian
    The shape and size of processed materials play a crucial role in the solid conveying characteristics of single-screw extruders. Thus, the increasing amount of plastic regrind leads to new challenges in screw extrusion. This work investigates the conveying behavior of three distinctly different material shapes in an axially as well as a helically grooved solid conveying zone. A uniform virgin polypropylene (PP) granule, an irregularly plate-shaped PP regrind and a powdery polyethylene (PE) are processed at screw speeds up to 1350 rpm. Thereby, frictionally engaged conveying in the grooves is visualized for the utilized powder. Similarly, the virgin granule is subject to forced conveying by interlocking in the grooves. The experimentally determined throughput is furthermore compared to analytical calculations which assume a so-called nut-screw conveying. It is found that these calculations perfectly predict the throughput when processing the virgin granule and the powder in a helically grooved barrel. In contrast, the analytical calculation significantly underestimates the throughput for the regrind. This underestimation is expected to be mainly caused by its plate shape and a difference in bulk density. The actual bulk density in the extruder is probably significantly higher due to both orientation and compaction effects compared to the measured bulk density that is used for the analytical calculation. Additionally, the regrind exhibits a fluctuating throughput due to the non-constant bulk density, which results from an irregular regrind shape and a broad size distribution.
  • Thumbnail Image
    ItemOpen Access
    Experimental investigation of the solid conveying behavior of smooth and grooved single-screw extruders at high screw speeds
    (2022) Johann, Kai S.; Mehlich, Stephan; Laichinger, Marcus; Bonten, Christian
    Single-screw extrusion at high screw speeds is established nowadays since it allows for a high mass throughput at a comparatively small extruder size. Compared to conventional extrusion at low screw speeds, a considerable non-linearity in mass throughput appears by exceeding a certain threshold screw speed. In this study, the solid conveying behavior of different plastic granules with varying geometries was investigated in a smooth, a helically and an axially grooved solid conveying zone for screw speeds up to 1350 rpm. These experimental findings are compared to classical analytical predictions in the literature. It is found for the first time that both the shape and size of the plastic granules play a decisive role in determining the threshold screw speed at which a non-linear mass throughput is observed. It is shown that small and spherical granules exhibit a later onset of non-linear throughput compared to larger lenticular and cylindrical shaped granules. Moreover, it is revealed that the mass throughput equalizes for an axially and a helically grooved solid conveying zone at high screw speeds. This is contrary to the low screw speed range where the axially grooved barrel results in a significantly higher throughput than the helically grooved barrel. Thus, the maximum throughput at high screw speeds is limited by the granule stream provided by the hopper opening and is no longer governed by the groove angle.
  • Thumbnail Image
    ItemOpen Access
    Mechanical properties of 3D-printed liquid crystalline polymers with low and high melting temperatures
    (2023) Johann, Kai S.; Wolf, Andreas; Bonten, Christian
    Additive manufacturing allows for the production of complex components using various types of materials such as plastics, metals and ceramics without the need for molding tools. In the field of high-performance polymers, semi-crystalline polymers such as polyetheretherketone (PEEK) or amorphous polymers such as polyetherimide (PEI) are already successfully applied. Contrary to semi-crystalline and amorphous polymers, thermotropic liquid crystalline polymers (LCPs) do not change into an isotropic liquid during melting. Instead, they possess anisotropic properties in their liquid phase. Within the scope of this work, this special group of polymers was investigated with regard to its suitability for processing by means of fused filament fabrication. Using an LCP with a low melting temperature of around 280 °C is compared to processing an LCP that exhibits a high melting temperature around 330 °C. In doing so, it was revealed that the achievable mechanical properties strongly depend on the process parameters such as the direction of deposition, printing temperature, printing speed and layer height. At a layer height of 0.10 mm, a Young’s modulus of 27.3 GPa was achieved. Moreover, by employing an annealing step after the printing process, the tensile strength could be increased up to 406 MPa at a layer height of 0.15 mm. Regarding the general suitability for FFF as well as the achieved uniaxial mechanical properties, the LCP with a low melting temperature was advantageous compared to the LCP with a high melting temperature.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart