Browsing by Author "Jung, Jong Hyun"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access High-accuracy thermodynamic properties to the melting point from ab initio calculations aided by machine-learning potentials(2023) Jung, Jong Hyun; Srinivasan, Prashanth; Forslund, Axel; Grabowski, BlazejAccurate prediction of thermodynamic properties requires an extremely accurate representation of the free-energy surface. Requirements are twofold - first, the inclusion of the relevant finite-temperature mechanisms, and second, a dense volume–temperature grid on which the calculations are performed. A systematic workflow for such calculations requires computational efficiency and reliability, and has not been available within an ab initio framework so far. Here, we elucidate such a framework involving direct upsampling, thermodynamic integration and machine-learning potentials, allowing us to incorporate, in particular, the full effect of anharmonic vibrations. The improved methodology has a five-times speed-up compared to state-of-the-art methods. We calculate equilibrium thermodynamic properties up to the melting point for bcc Nb, magnetic fcc Ni, fcc Al, and hcp Mg, and find remarkable agreement with experimental data. A strong impact of anharmonicity is observed specifically for Nb. The introduced procedure paves the way for the development of ab initio thermodynamic databases.Item Open Access Thermodynamic properties on the homologous temperature scale from direct upsampling : understanding electron-vibration coupling and thermal vacancies in bcc refractory metals(2023) Forslund, Axel; Jung, Jong Hyun; Srinivasan, Prashanth; Grabowski, BlazejWe have calculated thermodynamic properties of four bcc refractory elements - V, Ta, Mo, and W - up to the melting point with full density-functional-theory accuracy, using the recently developed direct-upsampling method [J. H. Jung et al., npj Comput. Mater. 9, 3 (2023)]. The direct-upsampling methodology takes full account of explicit anharmonic vibrations and electron-vibration coupling very efficiently using machine-learning potentials. We have thus been able to compute highly converged free-energy surfaces for the PBE exchange-correlation functional, from which accurate temperature dependencies of various thermodynamic properties such as the heat capacity, thermal expansion coefficient, and bulk modulus are accessible. For all four elements, the electronic contribution is large, including a strong coupling with the thermal vibrations. The atomic forces in W are even affected by the temperature-consistent Fermi broadening, which alters the free energy by around 3 meV/atom at the melting point. Trends within group V and group VI refractory elements are observed and explained by qualitative differences in the electronic density of states. We also provide an estimate of the Gibbs energies of vacancy formation and the vacancy contribution to the thermodynamics. Lastly and most importantly, our results are analyzed in terms of the homologous temperature scale relative to theoretically predicted melting points (for the PBE functional). The homologous temperature dependencies show a remarkable agreement with experiments and reveal the predictive power of self-consistently determined ab initio thermodynamic properties.