Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Kauffmann, Florian"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Mikrostruktur und Eigenschaften von Titannitrid/Siliciumnitrid-Schichten
    (2003) Kauffmann, Florian; Arzt, Eduard (Prof. Dr. phil.)
    Durch die Zugabe von wenigen Atomprozent Silicium zu Titannitrid können extreme Veränderungen der mechanischen Eigenschaften erzielt werden. Zum Beispiel nimmt die Härte einer TiN-Schicht um circa den Faktor zwei zu, wenn nur 2 at% Silicium zu einer TiN-Schicht hinzugefügt werden. Diese TiSiN-Schichten stellen eine interessante Beschichtung in der Verschleißschutztechnik dar, da diese hohe Härte mit Eigenschaften wie hoher Bruchzähigkeit kombiniert werden kann. Die vorliegende Arbeit beschäftigt sich mit der Frage, wie sich die Siliciumkonzentration in den TiSiN-Schichten auf die Mikrostruktur auswirkt und welche Mechanismen den mechanischen Eigenschaften zu Grunde liegen. Dazu wurden TiSiN-Schichten mit Siliciumgehalten von 0 at% bis zu 17 at% in industriellen PVD-Anlagen abgeschieden und hinsichtlich ihrer Zusammensetzung, Mikrostruktur und mechanischen Eigenschaften charakterisiert. Mit zunehmendem Siliciumgehalt tritt eine starke Kornfeinung der Titannitrid-Körner ein. Damit einher geht ein Übergang von einer kolumnaren Schichtstruktur für Siliciumgehalte unter 1 at% bis hin zu äquiaxialen TiN-Körnern mit einer Korngröße von 6 nm bei Siliciumgehalten über 6 at%. Die maximalen Härtewerte von um 45 GPa werden im Übergangsbereich zwischen den beiden extremen Mikrostrukturen gefunden. Abschätzungen der verschiedenen in Frage kommenden Verformungsmechanismen zeigen, dass die TiN-Körner unterhalb einer gewissen Korngröße nahezu theoretische Festigkeitswerte erreichen. Ein quantitatives Verständnis der gemessenen Härtewerte in Abhängigkeit von der Mikrostruktur wurde durch Finite-Elemente-Rechnungen erreicht.
  • Thumbnail Image
    ItemOpen Access
    Mitigating the amorphization of perovskite layers by using atomic layer deposition of alumina
    (2025) Kedia, Mayank; Das, Chittaranjan; Kot, Malgorzata; Yalcinkaya, Yenal; Zuo, Weiwei; Tabah Tanko, Kenedy; Matvija, Peter; Ezquer, Mikel; Cornago, Iñaki; Hempel, Wolfram; Kauffmann, Florian; Plate, Paul; Lira-Cantu, Monica; Weber, Stefan A. L.; Saliba, Michael
    Atomic layer deposition of aluminum oxide (ALD-Al2O3) layers has recently been studied for stabilizing perovskite solar cells (PSCs) against environmental stressors, such as humidity and oxygen. In addition, the ALD-Al2O3 layer acts as a protective barrier, mitigating pernicious halide ion migration from the perovskite towards the hole transport interface. However, its effectiveness in preventing the infiltration of ions and additives from the hole-transport layer into perovskites remains insufficiently understood. Herein, we demonstrate the deposition of a compact ultrathin (∼0.75 nm) ALD-Al2O3 layer that conformally coats the morphology of a triple-cation perovskite layer. This promotes an effective contact of the hole transporter layer on top of the perovskite, thereby improving the charge carrier collection between these two layers. Upon systematically investigating the layer-by-layer structure of the PSC, we discovered that ALD-Al2O3 also acts as a diffusion barrier for the degraded species from the adjacent transport layer into the perovskite. In addition to these protective considerations, ALD-Al2O3 impedes the transition of crystalline perovskites to an undesired amorphous phase. Consequently, the dual functionality (i.e., enhanced contact and diffusion barrier) of the ALD-Al2O3 protection enhanced the device performance from 19.1% to 20.5%, while retaining 98% of its initial performance compared to <10% for pristine devices after 1500 h of outdoor testing under ambient conditions. Finally, this study deepens our understanding of the mechanism of ALD-Al2O3 as a two-way diffusion barrier, highlighting the multifaceted role of buffer layers in interfacial engineering for the long-term stability of PSCs.
  • Thumbnail Image
    ItemOpen Access
    Thermodynamic modelling and microstructural study of Z-phase formation in a Ta-alloyed martensitic steel
    (2021) Riedlsperger, Florian; Gsellmann, Bernadette; Povoden-Karadeniz, Erwin; Tassa, Oriana; Matera, Susanna; Dománková, Mária; Kauffmann, Florian; Kozeschnik, Ernst; Sonderegger, Bernhard
    A thermokinetic computational framework for precipitate transformation simulations in Ta-containing martensitic Z-steels was developed, including Calphad thermodynamics, diffusion mobility data from the literature, and a kinetic parameter setup that considered precipitation sites, interfacial energies and dislocation density evolution. The thermodynamics of Ta-containing subsystems were assessed by atomic solubility data and enthalpies from the literature as well as from the experimental dissolution temperature of Ta-based Z-phase CrTaN obtained from differential scanning calorimetry. Accompanied by a comprehensive transmission electron microscopy analysis of the microstructure, thermokinetic precipitation simulations with a wide-ranging and well-documented set of input parameters were carried out in MatCalc for one sample alloy. A special focus was placed on modelling the transformation of MX into the Z-phase, which was driven by Cr diffusion. The simulation results showed excellent agreement with experimental data in regard to size, number density and chemical composition of the precipitates, showing the usability of the developed thermokinetic simulation framework.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart