Browsing by Author "Kern, Frank"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access Additive manufacturing of β-tricalcium phosphate components via Fused Deposition of Ceramics (FDC)(2020) Eßlinger, Steffen; Grebhardt, Axel; Jäger, Jonas; Kern, Frank; Killinger, Andreas; Bonten, Christian; Gadow, RainerDas Paper beschreibt die Compoundierung bioaktiver Keramik (Beta-Tricalciumphosphat) in einer organischen Matrix, die anschließende Extrusion zu Filamenten, die für den FDM-3D-Druck geeignet sind, sowie die Formgebund zu Scaffolds mittels additiver Fertigung. Weiterhin werden fertigungsprozessbegleitende Untersuchungen zur Entbinderung und Sinterung durchgeführt.Item Open Access Adjustment of micro- and macroporosity of ß-TCP scaffolds using solid-stabilized foams as bone replacement(2023) Dufner, Lukas; Oßwald, Bettina; Eberspaecher, Jan; Riedel, Bianca; Kling, Chiara; Kern, Frank; Seidenstuecker, MichaelTo enable rapid osteointegration in bioceramic implants and to give them osteoinductive properties, scaffolds with defined micro- and macroporosity are required. Pores or pore networks promote the integration of cells into the implant, facilitating the supply of nutrients and the removal of metabolic products. In this paper, scaffolds are created from ß-tricalciumphosphate (ß-TCP) and in a novel way, where both the micro- and macroporosity are adjusted simultaneously by the addition of pore-forming polymer particles. The particles used are 10-40 wt%, spherical polymer particles of polymethylmethacrylate (PMMA) (Ø = 5 m) and alternatively polymethylsilsesquioxane (PMSQ) (Ø = 2 m), added in the course of ß-TCP slurry preparation. The arrangement of hydrophobic polymer particles at the interface of air bubbles was incorporated during slurry preparation and foaming of the slurry. The foam structures remain after sintering and lead to the formation of macro-porosity in the scaffolds. Furthermore, decomposition of the polymer particles during thermal debindering results in the formation of an additional network of interconnecting micropores in the stabilizing structures. It is possible to adjust the porosity easily and quickly in a range of 1.2-140 m with a relatively low organic fraction. The structures thus prepared showed no cytotoxicity nor negative effects on the biocompatibility.Item Open Access Alumina and zirconia-reinforced polyamide PA-12 composites for biomedical additive manufacturing(2021) Nakonieczny, Damian S.; Kern, Frank; Dufner, Lukas; Antonowicz, Magdalena; Matus, KrzysztofThis work aimed to prepare a composite with a polyamide (PA) matrix and surface-modified ZrO2 or Al2O3 to be used as ceramic fillers (CFs). Those composites contained 30 wt.% ceramic powder to 70 wt.% polymer. Possible applications for this type of composite include bioengineering applications especially in the fields of dental prosthetics and orthopaedics. The ceramic fillers were subjected to chemical surface modification with Piranha Solution and suspension in 10 M sodium hydroxide and Si3N4 to achieve the highest possible surface development and to introduce additional functional groups. This was to improve the bonding between the CFs and the polymer matrix. Both CFs were examined for particle size distribution (PSD), functional groups (FTIR), chemical composition (XPS), phase composition (XRD), and morphology and chemical composition (SEM/EDS). Filaments were created from the powders prepared in this way and were then used for 3D FDM printing. Samples were subjected to mechanical tests (tensility, hardness) and soaking tests in a high-pressure autoclave in artificial saliva for 14, 21, and 29 days.Item Open Access Deposition of 3YSZ-TiC PVD coatings with high-power impulse magnetron sputtering (HiPIMS)(2021) Gaedike, Bastian; Guth, Svenja; Kern, Frank; Killinger, Andreas; Gadow, RainerOptimized coating adhesion and strength are the advantages of high-power impulse magnetron sputtering (HiPIMS) as an innovative physical vapor deposition (PVD) process. When depositing electrically non-conductive oxide ceramics as coatings with HiPIMS without dual magnetron sputtering (DMS) or mid-frequency (MF) sputtering, the growing coating leads to increasing electrical insulation of the anode. As a consequence, short circuits occur, and the process breaks down. This phenomenon is also known as the disappearing anode effect. In this study, a new approach involving adding electrically conductive carbide ceramics was tried to prevent the electrical insulation of the anode and thereby guarantee process stability. Yttria-stabilized zirconia (3YSZ) with 30 vol.% titanium carbide (TiC) targets are used in a non-reactive HiPIMS process. The main focus of this study is a parameter inquisition. Different HiPIMS parameters and their impact on the measured current at the substrate table are analyzed. This study shows the successful use of electrically conductive carbide ceramics in a non-conductive oxide as the target material. In addition, we discuss the observed high table currents with a low inert gas mix, where the process was not expected to be stable.Item Open Access Effect of calcination temperature on the phase composition, morphology, and thermal properties of ZrO2 and Al2O3 modified with APTES (3-aminopropyltriethoxysilane)(2021) Nakonieczny, Damian S.; Kern, Frank; Dufner, Lukas; Dubiel, Agnieszka; Antonowicz, Magdalena; Matus, KrzysztofThis paper describes the effect of calcination temperature on the phase composition, chemical composition, and morphology of ZrO2 and Al2O3 powders modified with 3-aminopropyltriethoxysilane (APTES). Both ceramic powders were modified by etching in piranha solution, neutralization in ammonia water, reaction with APTES, ultrasonication, and finally calcination at 250, 350, or 450 °C. The obtained modified powders were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, particle size distribution (PSD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), and thermogravimetric analysis (TGA).Item Open Access Effect of simulated mastication on structural stability of prosthetic zirconia material after thermocycling aging(2023) Ziębowicz, Anna; Oßwald, Bettina; Kern, Frank; Schwan, WilliRecent trends to improve the aesthetic properties-tooth-like color and translucency-of ceramic dental crowns have led to the development of yttria-stabilized zirconia (Y-TZP) materials with higher stabilizer content. These 5Y-TZP materials contain more cubic or t’ phase, which boosts translucency. The tradeoff as a consequence of a less transformable tetragonal phase is a significant reduction of strength and toughness compared to the standard 3Y-TZP composition. This study aims at determining the durability of such 5Y-TZP crowns under lab conditions simulating the conditions in the oral cavity during mastication and consumption of different nutrients. The test included up to 10,000 thermal cycles from 5 °C to 55 °C “from ice cream to coffee” and a chewing simulation representing 5 years of use applying typical loads. The investigation of the stress-affected zone at the surface indicates only a very moderate phase transformation from tetragonal to monoclinic after different varieties of testing cycles. The surface showed no indication of crack formation after testing. It can, therefore, be assumed that over the simulated period, dental crowns of 5Y-TZP are not prone to fatigue failure.Item Open Access Electrical discharge machinable ytterbia samaria co-stabilized zirconia tungsten carbide composites(2021) Rapp, Maximilian; Gommeringer, Andrea; Kern, FrankComposite ceramics of stabilizer oxide coated ytterbia-samaria costabilized zirconia (1.5Yb1.5Sm-TZP) and 24-32 vol% of tungsten carbide as an electrically conductive dispersion were manufactured by hot pressing at 1300-1400 °C for 2 h at 60 MPa pressure. The materials were characterized with respect to microstructure, phase composition, mechanical properties and electrical discharge machinability by die sinking. Materials with a nanocomposite microstructure and a strength of up to 1700 MPa were obtained. An attractive toughness of 6-6.5 MPa√m is achieved as 40-50% of the zirconia transformed upon fracture. The materials show fair material removal rates of 1 mm³/min in die sinking. Smooth surfaces indicate a material removal mechanism dominated by melting.Item Open Access Immobilization of TiO2 photocatalysts for water treatment in geopolymer based coatings(2023) Dufner, Lukas; Ott, Felix; Otto, Nikolai; Lembcke, Tom; Kern, FrankThis study presents a simple and sustainable coating technology for the deposition of photocatalytic coatings based on titanium dioxide and geopolymers, which requires no thermal post-treatment. Titania powder P25, potassium silicate and a calcium aluminate-based hardener were dispersed in water and applied to aluminum substrates using a paintbrush, a roller and a spray gun. The coatings were air-dried for 12 h. The photocatalytic activities were tested via degradation of an aqueous methylene blue solution in a batch reactor under artificial UV-A light. The roller and the spray gun-based coatings yielded well-adhering coatings with high photocatalytic activity. Brushed coatings were inhomogeneous and unstable. The presented method of producing photocatalytic coatings is very simple to apply and does not require complex technologies or energy-intensive thermal treatments.Item Open Access Influence of the feedstock preparation on the properties of highly filled alumina green-body and sintered parts produced by fused deposition of ceramic(2023) Heim, Thomas; Kern, FrankThis paper investigates new approaches for the blending and plastification of ceramic powder with a binder to form fused deposition of ceramic (FDC) feedstock. The fabrication of highly filled ceramic filaments was accomplished using the granulation by agitation technique, followed by twin-screw extruder homogenization and single-screw extruder filament extrusion. The feedstocks are based on alumina (Al2O3) powders, which were prepared with an industrial binder through three different routes: wet granulation, melt granulation and melt granulation with a suspension. After printing cubic samples and tensile test specimens on a commercial fused deposition modelling (FDM) printer, the properties of the resulting green-body and sintered parts were investigated. The green-body mechanical values are compared with results from commercially available filaments. Mixing the binder with the alumina powder and surfactant in a suspension produces the lowest viscosity and the best elongation at break.Item Open Access Mechanical properties and electrical discharge machinability of alumina-10 vol% zirconia-28 vol% titanium nitride composites(2020) Gommeringer, Andrea; Kern, FrankElectrical discharge machinable ceramics provide an alternative machining route independent on the material hardness which enables manufacturing of customized ceramic components. In this study a composite material based on an alumina/zirconia matrix and an electrically conductive titanium nitride dispersion was manufactured by hot pressing and characterized with respect to microstructure, mechanical properties and ED-machinability by die sinking. The composites show a combination of high strength of 700 MPa, hardness of 17-18 GPa and moderate fracture resistance of 4.5-5 MPa√m. With 40 kS/m the electrical conductivity is sufficiently high to ensure ED-machinability.Item Open Access Mechanical properties of 2Y-TZP fabricated from detonation synthesized powder(2020) Kern, Frank; Gommeringer, AndreaYttria stabilized zirconia (Y-TZP) is frequently used in dental and engineering applications due to its high strength and fracture resistance. In this study, 2Y-TZP samples were manufactured from commercially available powder produced by detonation synthesis. Tests of the mechanical properties exhibited an unusual combination of both very high strength and toughness. The materials show a very weak correlation between toughness and grain size. The transformability, measurable by XRD, cannot explain the high toughness. Fractographic analysis revealed a broad transformation affected zone with secondary cracks and shear bands on the tensile side of bending bars which can be made responsible for the high toughness and non-linear stress-strain curves.Item Open Access Mechanical properties of an extremely tough 1.5 mol% yttria-stabilized zirconia material(2024) Kern, Frank; Osswald, BettinaYttria-stabilized zirconia (Y-TZP) ceramics with a drastically reduced yttria content have been introduced by different manufacturers, aiming at improving the damage tolerance of ceramic components. In this study, an alumina-doped 1.5Y-TZP was axially pressed, pressureless sintered in air at 1250–1400 °C for 2 h and characterized with respect to mechanical properties, microstructure, and phase composition. The material exhibits a combination of a high strength of 1000 MPa and a high toughness of 8.5-10 MPa√m. The measured fracture toughness is, however, extremely dependent on the measurement protocol. Direct crack length measurements overestimate toughness due to trapping effects. The initially purely tetragonal material has a high transformability of >80%, the transformation behavior is predominantly dilational, and the measured R-curve-related toughness increments are in good agreement with the transformation toughness increments derived from XRD data.Item Open Access PA-12-zirconia-alumina-cenospheres 3D printed composites : accelerated ageing and role of the sterilisation process for physicochemical properties(2022) Nakonieczny, Damian S.; Antonowicz, Magdalena; SimhaMartynkova, Gražyna; Kern, Frank; Pazourková, Lenka; Erfurt, Karol; Hüpsch, MichałThe aim of this study was to conduct artificial ageing tests on polymer-ceramic composites prepared from polyamide PA-12 polymer matrix for medical applications and three different variants of ceramic fillers: zirconia, alumina and cenospheres. Before ageing, the samples were subjected to ethyl oxide sterilization. The composite variants were prepared for 3D printing using the fused deposition modeling method. The control group consisted of unsterilized samples. Samples were subjected to artificial ageing in a high-pressure autoclave. Ageing conditions were calculated from the modified Hammerlich Arrhenius kinetic equation. Ageing was carried out in artificial saliva. After ageing the composites were subjected to mechanical (tensile strength, hardness, surface roughness) testing, chemical and structural (MS, FTIR) analysis, electron microscopy observations (SEM/EDS) and absorbability measurements.Item Open Access Properties of 2 mol% yttria stabilized zirconia-alumina-cerium hexaaluminate composites(2020) Kern, FrankYttria stabilized zirconia (Y-TZP) has become a standard material in a variety of biomedical and mechanical engineering applications due to its high strength and toughness. In order to obtain improved properties in terms of strength, hardness and low temperature degradation resistance second phases, typically alumina are added. In this study an alumina toughened zirconia recipe with 20 vol% alumina in a 2Y-TZP matrix was modified by progressive substitution of alumina by up to 10 vol% cerium hexaaluminate (CA6). Samples were produced by hot pressing. The cerium hexaaluminate was synthesized in situ by reduction of tetravalent ceria and reaction sintering with alumina at 1450 °C. The materials reach attractive 4-point bending strength values of greater than 1170-1390 MPa at a fracture resistance of 6.4-7 MPa√m. Vickers hardness is slightly reduced from 1405 HV10 to 1380 HV10 with increasing CA6 fraction. Results show that substitution of alumina by low amounts CA6 does not lead to drastic changes in the mechanical properties. Hardness is slightly reduced while strength reaches a flat maximum at 4 vol% CA6 substitution. The toughness slightly declines with CA6 addition which is caused by reduced transformability of the tetragonal zirconia phase despite a slight coarsening of the matrix observed upon CA6 addition.Item Open Access Spark plasma sintering of electric discharge machinable 1.5Yb-1.5Sm-TZP-WC composites(2022) Walter, Ella; Rapp, Maximilian; Kern, FrankElectrically conductive zirconia tungsten carbide composites are attractive materials for manufacturing precision components by electrical discharge machining due to their high strength, toughness and electrical conductivity. In this study, nanocomposite ceramics with a ytterbia samaria co-stabilized zirconia 1.5Yb-1.5Sm-TZP matrix and 24–32 vol.% tungsten carbide dispersion were manufactured by spark plasma sintering (SPS) at 1400 °C for 15 min at 60 MPa pressure. The materials exhibited high strengths of 1300–1600 MPa, a moderate fracture resistance of 6 MPa√m and an ultrafine microstructure with grain sizes in the 150 nm range. Scanning electron microscopy and RAMAN spectroscopy revealed the in situ formation of carbon during the SPS process and carbon formation scales with tungsten carbide content, and this apparently impedes bending strength.