Browsing by Author "Kern, Klaus"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Unknown Nanoscale mapping of magnetic auto-oscillations with a single spin sensor(2025) Hache, Toni; Anshu, Anshu; Shalomayeva, Tetyana; Richter, Gunther; Stöhr, Rainer; Kern, Klaus; Wrachtrup, Jörg; Singha, AparajitaSpin Hall nano-oscillators convert DC to magnetic auto-oscillations in the microwave regime. Current research on these devices is dedicated to creating next-generation energy-efficient hardware for communication technologies. Despite intensive research on magnetic auto-oscillations within the past decade, the nanoscale mapping of those dynamics remained a challenge. We image the distribution of free-running magnetic auto-oscillations by driving the electron spin resonance transition of a single spin quantum sensor, enabling fast acquisition (100 ms/pixel). With quantitative magnetometry, we experimentally demonstrate for the first time that the auto-oscillation spots are localized at magnetic field minima acting as local potential wells for confining spin-waves. By comparing the magnitudes of the magnetic stray field at these spots, we decipher the different frequencies of the auto-oscillation modes. The insights gained regarding the interaction between auto-oscillation modes and spin-wave potential wells enable advanced engineering of real devices.Item Open Access Readout and control of an endofullerene electronic spin(2020) Pinto, Dinesh; Paone, Domenico; Kern, Bastian; Dierker, Tim; Wieczorek, René; Singha, Aparajita; Dasari, Durga; Finkler, Amit; Harneit, Wolfgang; Wrachtrup, Jörg; Kern, KlausAtomic spins for quantum technologies need to be individually addressed and positioned with nanoscale precision. C60 fullerene cages offer a robust packaging for atomic spins, while allowing in-situ physical positioning at the nanoscale. However, achieving single-spin level readout and control of endofullerenes has so far remained elusive. In this work, we demonstrate electron paramagnetic resonance on an encapsulated nitrogen spin (14N@C60) within a C60 matrix using a single near-surface nitrogen vacancy (NV) center in diamond at 4.7 K. Exploiting the strong magnetic dipolar interaction between the NV and endofullerene electronic spins, we demonstrate radio-frequency pulse controlled Rabi oscillations and measure spin-echos on an encapsulated spin. Modeling the results using second-order perturbation theory reveals an enhanced hyperfine interaction and zero-field splitting, possibly caused by surface adsorption on diamond. These results demonstrate the first step towards controlling single endofullerenes, and possibly building large-scale endofullerene quantum machines, which can be scaled using standard positioning or self-assembly methods.