Browsing by Author "Kessler, Stefanie Wiltrud"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Structurally informed methods for improved sentiment analysis(2017) Kessler, Stefanie Wiltrud; Kuhn, Jonas (Prof. Dr.)Sentiment analysis deals with methods to automatically analyze opinions in natural language texts, e.g., product reviews. Such reviews contain a large number of fine-grained opinions, but to automatically extract detailed information it is necessary to handle a wide variety of verbalizations of opinions. The goal of this thesis is to develop robust structurally informed models for sentiment analysis which address challenges that arise from structurally complex verbalizations of opinions. In this thesis, we look at two examples for such verbalizations that benefit from including structural information into the analysis: negation and comparisons. Negation directly influences the polarity of sentiment expressions, e.g., while "good" is positive, "not good" expresses a negative opinion. We propose a machine learning approach that uses information from dependency parse trees to determine whether a sentiment word is in the scope of a negation expression. Comparisons like "X is better than Y" are the main topic of this thesis. We present a machine learning system for the task of detecting the individual components of comparisons: the anchor or predicate of the comparison, the entities that are compared, which aspect they are compared in, and which entity is preferred. Again, we use structural context from a dependency parse tree to improve the performance of our system. We discuss two ways of addressing the issue of limited availability of training data for our system. First, we create a manually annotated corpus of comparisons in product reviews, the largest such resource available to date. Second, we use the semi-supervised method of structural alignment to expand a small seed set of labeled sentences with similar sentences from a large set of unlabeled sentences. Finally, we work on the task of producing a ranked list of products that complements the isolated prediction of ratings and supports the user in a process of decision making. We demonstrate how we can use the information from comparisons to rank products and evaluate the result against two conceptually different external gold standard rankings.