Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Keup, Corinna"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state
    (2017) Mauser, Rebekka; Kungulovski, Goran; Keup, Corinna; Reinhardt, Richard; Jeltsch, Albert
    Histone post-translational modifications (PTMs) play central roles in chromatin-templated processes. Combinations of two or more histone PTMs form unique interfaces for readout and recruitment of chromatin-interacting complexes, but the genome-wide mapping of co-existing histone PTMs remains an experimentally difficult task. We introduce here a novel type of affinity reagents consisting of two fused recombinant histone modification interacting domains (HiMID) for direct detection of doubly modified chromatin. To develop the method, we fused the MPP8 Chromodomain and DNMT3A PWWP domain which have a binding specificity for H3K9me3 and H3K36me2/3, respectively. We validate the novel reagent biochemically and in ChIP applications and show its specific interaction with H3K9me3-H3K36me2/3 doubly modified chromatin. Modification specificity was confirmed using mutant double-HiMIDs with inactivated methyllysine binding pockets. Using this novel tool, we mapped co-existing H3K9me3-H3K36me2/3 marks in human cells by chromatin interaction domain precipitation (CIDOP). CIDOP-seq data were validated by qPCR, sequential CIDOP/ChIP and by comparison with CIDOP- and ChIP-seq data obtained with single modification readers and antibodies. The genome-wide distribution of H3K9me3-H3K36me2/3 indicates that it represents a novel bivalent chromatin state, which is enriched in weakly transcribed chromatin segments and at ZNF274 and SetDB1 binding sites.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart