Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Killinger, Andreas"

Filter results by typing the first few letters
Now showing 1 - 13 of 13
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Additive manufacturing of β-tricalcium phosphate components via Fused Deposition of Ceramics (FDC)
    (2020) Eßlinger, Steffen; Grebhardt, Axel; Jäger, Jonas; Kern, Frank; Killinger, Andreas; Bonten, Christian; Gadow, Rainer
    Das Paper beschreibt die Compoundierung bioaktiver Keramik (Beta-Tricalciumphosphat) in einer organischen Matrix, die anschließende Extrusion zu Filamenten, die für den FDM-3D-Druck geeignet sind, sowie die Formgebund zu Scaffolds mittels additiver Fertigung. Weiterhin werden fertigungsprozessbegleitende Untersuchungen zur Entbinderung und Sinterung durchgeführt.
  • Thumbnail Image
    ItemOpen Access
    Copper-enriched hydroxyapatite coatings obtained by high-velocity suspension flame spraying : effect of various gas parameters on biocompatibility
    (2024) Le, Long-Quan R. V.; Lanzino, M. Carolina; Blum, Matthias; Höppel, Anika; Al-Ahmad, Ali; Killinger, Andreas; Gadow, Rainer; Rheinheimer, Wolfgang; Seidenstuecker, Michael
    Hydroxyapatite (HAp)-coated bone implants are frequently used for orthopaedic or dental implants since they offer high biocompatibility and osteoconductivity. Yet, problems such as infections, e.g. periprosthetic joint infections, occur when implanting foreign material into the body. In this study, HAp coatings were produced via high-velocity suspension flame spraying (HVSFS). This method allows for the production of thin coatings. We investigated the effects of different gas parameters on the coating properties and on the biocompatibility, which was tested on the human osteosarcoma cell line MG63. Furthermore, Copper (Cu) was added to achieve antibacterial properties which were evaluated against standard microorganisms using the airborne assay. Three gas parameter groups (low, medium, and high) with different Cu additions (0 wt.%, 1 wt.% and 1.5 wt.%) were evaluated. Our findings show that porosity as well as hardness can be controlled through gas parameters. Furthermore, we showed that it is possible to add Cu through external injection. The Cu content in the coating as well as the release varies with different gas parameters. Both antibacterial efficacy as well as biocompatibility are affected by the Cu content. We could significantly reduce the amount of colony-forming units (CFU) in all coatings for E. coli , CFU for S. aureus was reduced by adding 1.5 wt.% of Cu to the coating. The biocompatibility testing showed a cytotoxicity threshold at a Cu-release of 14.3 mg/L in 120 hours. Based on our findings, we suggest medium gas parameters for HVSFS and the addition of 1 wt.% Cu to the coating. With these parameters, a reasonable antibacterial effect can be achieved while maintaining sufficient biocompatibility.
  • Thumbnail Image
    ItemOpen Access
    Deposition of 3YSZ-TiC PVD coatings with high-power impulse magnetron sputtering (HiPIMS)
    (2021) Gaedike, Bastian; Guth, Svenja; Kern, Frank; Killinger, Andreas; Gadow, Rainer
    Optimized coating adhesion and strength are the advantages of high-power impulse magnetron sputtering (HiPIMS) as an innovative physical vapor deposition (PVD) process. When depositing electrically non-conductive oxide ceramics as coatings with HiPIMS without dual magnetron sputtering (DMS) or mid-frequency (MF) sputtering, the growing coating leads to increasing electrical insulation of the anode. As a consequence, short circuits occur, and the process breaks down. This phenomenon is also known as the disappearing anode effect. In this study, a new approach involving adding electrically conductive carbide ceramics was tried to prevent the electrical insulation of the anode and thereby guarantee process stability. Yttria-stabilized zirconia (3YSZ) with 30 vol.% titanium carbide (TiC) targets are used in a non-reactive HiPIMS process. The main focus of this study is a parameter inquisition. Different HiPIMS parameters and their impact on the measured current at the substrate table are analyzed. This study shows the successful use of electrically conductive carbide ceramics in a non-conductive oxide as the target material. In addition, we discuss the observed high table currents with a low inert gas mix, where the process was not expected to be stable.
  • Thumbnail Image
    ItemOpen Access
    Deposition of fluoresceine-doped HAp coatings via high-velocity suspension flame spraying
    (2022) Blum, Matthias; Derad, Lukas; Killinger, Andreas
    In current medicine, joint revision surgery plays an important role in the treatment of degenerative joint diseases. Infections of the artificial joints are an iatrogenic, accompanying symptom after joint replacement procedures. A new approach is to functionalize the bioactive coatings of the implants by infiltrating them with anti-inflammatory drugs. This work aims at a one-step approach in manufacturing drug-doped, porous hydroxyapatite coatings by high-velocity suspension flame spraying (HVSFS). Thermal exposure of the temperature-sensitive drugs is critical. Therefore, a new process setup, combining one axial and one radial suspension line, is used for coating deposition. The lower dwell time of the suspension in the flame through radial injection helps in controlling the temperature exposition of the contained drug to the flame. Additionally, the influence of the powder morphology, used as a carrier for the drug in the suspension, is investigated by carrying out spray experiments with suspensions from three different granule types. To analyze the temperature exposition within the coating process, fluoresceine was used as a model drug, as the decomposition of the organic, fluorescing molecules can be easily controlled by fluorescence intensity measurements. It could be shown that the deposition of temperature-sensitive organic molecules is possible without degrading the molecular structure by a modified HVSFS process. This knowledge offers new possibilities in the cost-effective one-step manufacturing of functionalized, anti-inflammatory bioceramic coatings on orthopaedic implants.
  • Thumbnail Image
    ItemOpen Access
    Funktionsschichten für industrielle Anwendungen : Energieeinsparung durch neue Glaskeramikkochsysteme, Leichtmetallwerkstoffe im Fahrzeugbau, Schichtverbundstrukturen für Implantate
    (2003) Killinger, Andreas
    Das komplexe Anforderungsprofil moderner ingenieur- und werkstofftechnischerAufgabenstellungen bedingt in zunehmendem Maße den Einsatz von Werkstoffkombinationen in Form von Verbundmaterialien und Verbundbauweisen. Ein Einzelwerkstoff kann in seiner Funktion den gestellten Anforderungen im Allgemeinen nicht mehr gerecht werden.
  • Thumbnail Image
    ItemOpen Access
    High velocity suspension flame spraying (HVSFS) of metal suspensions
    (2020) Blum, Matthias; Krieg, Peter; Killinger, Andreas; Gadow, Rainer; Luth, Jan; Trenkle, Fabian
    Thermal spraying of metal materials is one of the key applications of this technology in industry for over a hundred years. The variety of metal-based feedstocks (powders and wires) used for thermal spray is incredibly large and utilization covers abrasion and corrosion protection, as well as tribological and electrical applications. Spraying metals using suspension- or precursor-based thermal spray methods is a relatively new and unusual approach. This publication deals with three metal types, a NiCr 80/20, copper (Cu), and silver (Ag), sprayed as fine-grained powders dispersed in aqueous solvent. Suspensions were sprayed by means of high-velocity suspension spraying (HVSFS) employing a modified TopGun system. The aim was to prepare thin and dense metal coatings (10-70 µm) and to evaluate the process limits regarding the oxygen content of the coatings. In case of Cu and Ag, possible applications demand high purity with low oxidation of the coating to achieve for instance a high electrical conductivity or catalytic activity. For NiCr however, it was found that coatings with a fine dispersion of oxides can be usable for applications where a tunable resistivity is in demand. The paper describes the suspension preparation and presents results of spray experiments performed on metal substrates. Results are evaluated with respect to the phase composition and the achieved coating morphology. It turns out that the oxidation content and spray efficiency is strongly controlled by the oxygen fuel ratio and spray distance.
  • Thumbnail Image
    ItemOpen Access
    Metallization of carbon fiber-reinforced plastics (CFRP) : influence of plasma pretreatment on mechanical properties and splat formation of atmospheric plasma-sprayed aluminum coatings
    (2024) Semmler, Christian; Schwan, Willi; Killinger, Andreas
    Carbon fiber-reinforced plastics (CFRPs) have broad applications as lightweight structural materials due to their remarkable strength-to-weight ratio. Aluminum is often used as a bond coating to ensure adhesion between CFRPs and further coatings with a higher melting temperature. However, challenges persist in optimizing their surface properties and adhesion attributes for diverse applications. This investigation explores the impact of sandblasting and plasma pretreatment on CFRP surfaces and their influence on plasma-sprayed aluminum coatings. Two distinct CFRP substrates, distinguished by their cyanate ester and epoxy resin matrices, and two different aluminum powder feedstocks were employed. Plasma pretreatment induced micro-surface roughening in the range of 0.5 µm and significantly reduced the contact angles on polished specimens. Notably, on sandblasted specimens, plasma-activated surfaces displayed improved wetting behavior, which is attributed to the removal of polymeric fragments and augmented fiber exposure. Aluminum splats show a better interaction with carbon fibers compared to a polymeric matrix material. The impact of plasma activation on the coating adhesion proved relatively limited. All samples with plasma activation had deposition efficiencies that increased by 12.5% to 34.4%. These findings were supported by SEM single-splat analysis and contribute to a deeper comprehension of surface modification strategies tailored to CFRPs.
  • Thumbnail Image
    ItemOpen Access
    Modelling and experimental validation of the flame temperature profile in atmospheric plasma coating processes on the substrate
    (2024) Martínez-García, Jose; Martínez-García, Venancio; Killinger, Andreas
    This work presents a characterisation model for the temperature distribution at different substrate depths during the atmospheric plasma spray (APS) coating process. The torch heat flow in this model is simulated as forced convection defined by a surface, a temperature profile, and a convection coefficient. The simulation model considers three plasma temperature profiles of the Al2O3 coating on a 5 mm thickness flat aluminium substrate. The simple and low-cost experimental procedure, based on a thermocouple, measures the plasma plume temperature distribution of the APS coating system, and their results are used to obtain the parameter values of each of the three proposed plasma temperature profiles. The experimental method for in situ non-contact temperature measurements inside the substrate is based on an infrared pyrometry technique and validates the simulation results. The Gaussian temperature profile shows excellent accuracy with the measured temperatures. The Gaussian approach could be a powerful tool for predicting residual stress through a coupled one-way thermal-mechanical analysis of the APS process.
  • Thumbnail Image
    ItemOpen Access
    Plasma spraying of a microwave absorber coating for an RF dummy load
    (2021) Killinger, Andreas; Gantenbein, Gerd; Illy, Stefan; Ruess, Tobias; Weggen, Jörg; Martinez-Garcia, Venancio
    The European fusion reactor research facility, called International Thermonuclear Experimental Reactor (ITER), is one of the most challenging projects that involves design and testing of hundreds of separately designed reactor elements and peripheric modules. One of the core elements involved in plasma heating are gyrotrons. They are used as a microwave source in electron-cyclotron resonance heating systems (ECRH) for variable injection of RF power into the plasma ring. In this work, the development and application of an alumina-titania 60/40 mixed oxide ceramic absorber coating on a copper cylinder is described. The cylinder is part of a dummy load used in gyrotron testing and its purpose is to absorb microwave radiation generated by gyrotrons during testing phase. The coating is applied by means of atmospheric plasma spraying (APS). The absorber coating is deposited on the inner diameter of a one-meter cylindrical tube. To ensure homogeneous radiation absorption when the incoming microwave beam is repeatedly scattered along the inner tube surface, the coating shows a varying thickness as a function of the tube length. By this it is ensured that the thermal power is distributed homogeneously on the entire inner tube surface. This paper describes a modeling approach of the coating thickness distribution, the manufacturing concept for the internal plasma spray coating and the coating characterization with regard to coating microstructure and microwave absorption characteristics.
  • Thumbnail Image
    ItemOpen Access
    Prediction of in-flight particle properties and mechanical performances of HVOF-sprayed NiCr-Cr3C2 coatings based on a hierarchical neural network
    (2023) Gui, Longen; Wang, Botong; Cai, Renye; Yu, Zexin; Liu, Meimei; Zhu, Qixin; Xie, Yingchun; Liu, Shaowu; Killinger, Andreas
    High-velocity oxygen fuel (HVOF) spraying is a promising technique for depositing protective coatings. The performances of HVOF-sprayed coatings are affected by in-flight particle properties, such as temperature and velocity, that are controlled by the spraying parameters. However, obtaining the desired coatings through experimental methods alone is challenging, owing to the complex physical and chemical processes involved in the HVOF approach. Compared with traditional experimental methods, a novel method for optimizing and predicting coating performance is presented herein; this method involves combining machine learning techniques with thermal spray technology. Herein, we firstly introduce physics-informed neural networks (PINNs) and convolutional neural networks (CNNs) to address the overfitting problem in small-sample algorithms and then apply the algorithms to HVOF processes and HVOF-sprayed coatings. We proposed the PINN and CNN hierarchical neural network to establish prediction models for the in-flight particle properties and performances of NiCr-Cr3C2 coatings (e.g., porosity, microhardness, and wear rate). Additionally, a random forest model is used to evaluate the relative importance of the effect of the spraying parameters on the properties of in-flight particles and coating performance. We find that the particle temperature and velocity as well as the coating performances (porosity, wear resistance, and microhardness) can be predicted with up to 99% accuracy and that the spraying distance and velocity of in-flight particles exert the most substantial effects on the in-flight particle properties and coating performance, respectively. This study can serve as a theoretical reference for the development of intelligent HVOF systems in the future.
  • Thumbnail Image
    ItemOpen Access
    Resonant atmospheric plasma-sprayed ceramic layers effectively absorb microwaves at 170 GHz
    (2022) Hentrich, Andreas; Garcia, Venancio Martinez; Killinger, Andreas; Plaum, Burkhard; Lechte, Carsten; Tovar, Günter E. M.
    AbstractMicrowave absorbing layer materials (MALMs) are extremely important for many components in fusion reactors to absorb microwave radiation in a controlled manner and with predictable power density. Therefore, a detailed knowledge of absorption properties of absorber coating materials used is necessary. Plasma-sprayed mixed oxide coatings are most commonly used in those applications where moderate power density is expected. In this paper, a plane wave absorption model is presented using refractive index and absorption coefficient as internal parameters and incidence angle, polarization, and layer thickness as external parameters. The model has been calculated assuming radiation of 170 GHz, as envisaged for the ITER research facility. Three atmospheric plasma-sprayed coating materials were considered in this work: titanium dioxide (TiO2), chromium oxide (Cr2O3), and a mixed aluminum-titanium oxide Al2O3-TiO2 (40/60). Theoretical results are compared with free wave measurements with two antennas. Different coating thicknesses have been prepared and measured in different polarization and incidence angles. Results are discussed regarding polarization, incidence angle, layer thickness, absorption coefficient, and refractive index.
  • Thumbnail Image
    ItemOpen Access
    Suspension-sprayed calcium phosphate coatings with antibacterial properties
    (2024) Lanzino, Maria Carolina; Le, Long-Quan R. V.; Höppel, Anika; Killinger, Andreas; Rheinheimer, Wolfgang; Dembski, Sofia; Al-Ahmad, Ali; Mayr, Hermann O.; Seidenstuecker, Michael
    Prosthesis loosening due to lack of osteointegration between an implant and surrounding bone tissue is one of the most common causes of implant failure. Further, bacterial contamination and biofilm formation onto implants represent a serious complication after surgery. The enhancement of osteointegration can be achieved by using bioconductive materials that promote biological responses in the body, stimulating bone growth and thus bonding to tissue. Through the incorporation of antibacterial substances in bioconductive, biodegradable calcium phosphate (CaP) coatings, faster osteointegration and bactericidal properties can be achieved. In this study, Cu-doped CaP supraparticles are spray-dried and suspension-sprayed CaP ceramic coatings with antibacterial properties are prepared using high-velocity suspension flame spraying (HVSFS). The objective was to increase the coatings’ porosity and investigate which Cu-doped supraparticles have the strongest antibacterial properties when introduced into the coating layers. Biocompatibility was tested on human Osteosarcoma cells MG63. A porosity of at least 13% was achieved and the supraparticles could be implemented, enhancing it up to 16%. The results showed that the addition of Cu-doped supraparticles did not significantly reduce the number of viable cells compared to the Cu-free sample, demonstrating good biocompatibility. The antimicrobial activity was assessed against the bacterial strains Escherichia coli and Staphylococcus aureus , with Safe Airborne Antibacterial testing showing a significant reduction in both Gram-positive and Gram-negative strains on the Cu-doped coatings.
  • Thumbnail Image
    ItemOpen Access
    Thin GB14 coatings on implants using HVSFS
    (2024) Lanzino, Maria Carolina; Le, Long-Quan R. V.; Wilbig, Janka; Rheinheimer, Wolfgang; Seidenstuecker, Michael; Günster, Jens; Killinger, Andreas
    Enhancing osseointegration, the process by which medical implants securely bond to bone, is crucial for improving patient outcomes in orthopedics and dental surgery. Calcium alkali orthophosphates, with their superior bioactivity, resorbability, and chemical resemblance to bone minerals, have emerged as promising candidates for implant coatings. These materials offer improved solubility and lower melting points due to the substitution of calcium with potassium and sodium, along with the addition of magnesium oxide. This study investigates GB14 calcium alkali orthophosphate coatings applied via High Velocity Suspension Flame Spraying (HVSFS), a technique that enables precise control over coating properties. A porosity target of >10% was set to promote bone growth, and we achieved porosities up to 13%, ensuring better cell penetration and stability at the implant-bone interface. Coatings were produced using different gas parameters and distances, with their microstructure and phase composition analyzed using scanning electron microscope (SEM), Vickers hardness testing and X-ray diffraction (XRD). Additionally, roughness and porosity were also assessed. Different coating’s microstructures were achieved by varying stand-off distance and gas parameters. Increasing stand-off distance while reducing gas stoichiometry enabled the production of calcium alkali orthophosphate coatings with fewer cracks, higher porosity and a hardness level comparable to that of state-of-the-art tricalcium phosphate (TCP) coatings. The sample with optimized properties in terms of achieved microstructure and topography was selected for in vitro testing using MG63 osteosarcoma cells to evaluate cell proliferation and adhesion. WST (I) assay, LDH assay, and live/dead staining confirmed the biocompatibility of the coatings, highlighting the potential of HVSFS to enhance osseointegration and outperform conventional methods in implantology. No relevant cytotoxicity could be shown and cells show a good proliferation over time. These results highlight thus the potential of HVSFS to produce thin, bioactive and resorbable coatings to enhance osseointegration.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart