Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Kilsby, Chris"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Assessing rainfall radar errors with an inverse stochastic modelling framework
    (2024) Green, Amy C.; Kilsby, Chris; Bárdossy, András
    Weather radar is a crucial tool for rainfall observation and forecasting, providing high-resolution estimates in both space and time. Despite this, radar rainfall estimates are subject to many error sources - including attenuation, ground clutter, beam blockage and drop-size distribution - with the true rainfall field unknown. A flexible stochastic model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard weather radar processing methods and imposing path-integrated attenuation effects, a stochastic drop-size-distribution field, and sampling and random errors. This can provide realistic weather radar images, of which we know the true rainfall field and the corrected “best-guess” rainfall field which would be obtained if they were observed in a real-world case. The structure of these errors is then investigated, with a focus on the frequency and behaviour of “rainfall shadows”. Half of the simulated weather radar images have at least 3 % of their significant rainfall rates shadowed, and 25 % have at least 45 km 2 containing rainfall shadows, resulting in underestimation of the potential impacts of flooding. A model framework for investigating the behaviour of errors relating to the radar rainfall estimation process is demonstrated, with the flexible and efficient tool performing well in generating realistic weather radar images visually for a large range of event types.
  • Thumbnail Image
    ItemOpen Access
    Is precipitation responsible for the most hydrological model uncertainty?
    (2022) Bárdossy, András; Kilsby, Chris; Birkinshaw, Stephen; Wang, Ning; Anwar, Faizan
    Rainfall-runoff modeling is highly uncertain for a number of different reasons. Hydrological processes are quite complex, and their simplifications in the models lead to inaccuracies. Model parameters themselves are uncertain-physical parameters because of their observations and conceptual parameters due to their limited identifiability. Furthermore, the main model input-precipitation is uncertain due to the limited number of available observations and the high spatio-temporal variability. The quantification of model output uncertainty is essential for their use. Most approaches used for the quantification of uncertainty in rainfall-runoff modeling assign the uncertainty to the model parameters. In this contribution, the role of precipitation uncertainty is investigated. Instead of a standard sensitivity analysis of the model output with respect to the input variations, it is investigated to what extent realistic precipitation fields could improve model performance. Realistic precipitation fields are defined as gridded realizations of precipitation which reproduce the observed values at the observation locations, with values which reproduce the distribution of the observed values and with spatial variability the same as the spatial variability of the observations. The above conditions apply to each observation time step. Through an inverse modeling approach based on Random Mixing precipitation fields fulfilling the above conditions and reproducing the discharge output better than using traditional interpolated observations can be obtained. These realizations show how much rainfall runoff models may profit from better precipitation input and how much remains for the parameter and model concept uncertainty. The methodology is applied using two hydrological models with a contrasting basis, SHETRAN and HBV, for three different mesoscale sub-catchments of the Neckar basin in Germany. Results show that up to 50% of the model error can be attributed to precipitation uncertainty. Further, inverting precipitation using hydrological models can improve model performance even in neighboring catchments which are not considered explicitly.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart