Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Kohl, Stefan"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Inhomogeneous fractals as a Martin boundary
    (2022) Kohl, Stefan; Freiberg, Uta Renata (Prof. Dr.)
  • Thumbnail Image
    ItemOpen Access
    Restklassenweise affine Gruppen
    (2005) Kohl, Stefan; Kimmerle, Wolfgang (Prof.)
    Diese Arbeit ist ursprünglich motiviert durch die 3n+1 - Vermutung. Diese Vermutung besagt, daß iterierte Anwendung der Collatz-Abbildung T: Z -> Z, n -> (n/2 falls n gerade, (3n+1)/2 falls n ungerade) auf eine positive ganze Zahl nach endlich vielen Schritten zur 1 führt. Die 3n+1 - Vermutung wurde um 1930 von Lothar Collatz aufgestellt und konnte bis heute nicht bewiesen werden - vgl. Lagarias' zugehörige kommentierte Bibliographie, erhältlich unter http://arxiv.org/abs/math.NT/0309224. Die Arbeit versucht nicht, die 3n+1 - Vermutung zu beweisen. Sie untersucht vielmehr die Struktur von Gruppen, die von bijektiven restklassenweise affinen Abbildungen, d.h. von "der Collatz-Abbildung ähnlichen" Permutationen, erzeugt werden. Derartige Gruppen werden in dieser Arbeit nach Kenntnisstand des Autors zum ersten Mal untersucht. Zielsetzung dieser Arbeit ist in erster Linie die Untersuchung der Struktur der Gruppe RCWA(Z) aller restklassenweise affinen Bijektionen des Rings der ganzen Zahlen. Ein Hauptergebnis ist die Konstruktion eines nichttrivialen Normalteilers der Gruppe RCWA(Z). Ferner werden - neben zahlreichen anderen Strukturaussagen zur Gruppe RCWA(Z) selbst und zur Untergruppe der klassenweise ordnungserhaltenden Abbildungen - Reichhaltigkeitsbedingungen an Normalteiler hergeleitet und Einbettbarkeitsresultate für Klassen von Gruppen in RCWA(Z) erzielt. Viele der Resultate werden in allgemeinerem Kontext erzielt für Gruppen RCWA(R) über euklidischen Ringen R. Abgerundet wird die Arbeit von einer ausführlichen Diskussion einer Anzahl von Beispielen. Restklassenweise affine Gruppen, d.h. Untergruppen von RCWA(R), bilden eine Klasse i.a. unendlicher Permutationsgruppen, die rechnerischen Untersuchungen zugänglich sind. Parallel zur Anfertigung dieser Arbeit hat der Autor Algorithmen hierzu entwickelt, und diese in einem Package namens RCWA für das Computeralgebrasystem GAP implementiert. Dieses Package ist erhältlich unter http://www.gap-system.org/Packages/rcwa.html.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart