Browsing by Author "Kreitmeir, Markus"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Untersuchungen fluider Systeme mit Computersimulationen und Neutronenbeugungsexperimenten(2004) Kreitmeir, Markus; Bertagnolli, Helmut (Prof. Dr.)Die vorliegende Arbeit zeigt, dass das Zusammenspiel von Neutronenbeugungsexperimenten und Computersimulationen sich als äußerst produktiv hinsichtlich der Untersuchung der Struktur von Fluiden erweist. Durch die durchgeführten Hochdruckneutronenbeugungsexperimente wurden Strukturinformationen für einen großen Bereich thermodynamischer Zustände zugänglich. Die experimentellen Daten sind mit Hilfe von Computersimulationen genauer analysiert worden. Zu früheren Hochdruckmessungen an flüssigem und überkritischem Fluorwasserstoff wurden ab initio Molekulardynamik Simulationen nach der Methode von Car und Parrinello durchgeführt. Diese beschreiben die Änderung der Struktur des Systems sehr gut. Wegen des großen rechnerischen Aufwands wurden diese Simulationen am HLRS, dem Stuttgarter Höchstleistungsrechenzentrum, durchgeführt. Es wurden außerdem die vom Fluorwasserstoff gebildeten Assoziate analysiert. Es ließ sich zeigen, daß die Größe der Assoziate mit zunehmender Temperatur und abnehmender Dichte abnimmt. Aus den ab initio Simulationen konnten darüber hinaus die Änderung der Bindungslänge sowie des Dipolmoments des Fluorwasserstoffmoleküls mit Temperatur und Dichte hervorragend beschrieben werden. Weiterhin konnten dynamische Größen bestimmt werden. Die gewonnenen Daten sind in sehr guter Übereinstimmung mit experimentellen Werten, soweit diese existieren. Für diese Zustände von Fluorwasserstoff wurden auch force field Simulationen mit zwei bekannten Paarpotentialen gemacht. Außerdem wurde in dieser Arbeit ein neues Potential vorgestellt, das die Struktur des Fluorwasserstoffs am besten beschreibt. Nur bei einem literaturbekannten Paarpotential waren Aussagen über Bindungslänge und Dipolmoment möglich, die Resultate waren aber – im Gegensatz zu den Car-Parrinello Simulationen – nicht befriedigend. Bei Aufenthalten am Forschungsreaktor am Institut Laue-Langevin in Grenoble (F) und der Spallationsquelle ISIS nahe Oxford (GB) wurden Neutronenbeugungsexperimente an Fluorwasserstoff in der Gasphase sowie an überkritischem Methan durchgeführt. Die experimentellen Daten gasförmigen Fluorwasserstoffs weisen eine starke Abhängigkeit der Nahordnung mit der Dichte des Systems auf. Zu diesen Zuständen wurden wiederum force field Simulationen durchgeführt. Die experimentellen Daten konnten unter anderem mit Hilfe des neu entwickelten Potentials erklärt werden. Es konnte gezeigt werden, daß auch die Gasphase aus kurzen Fluorwasserstoffketten besteht; es existieren aber auch oligomere Ringe. Die Neutronenbeugungsexperimente an Deuteromethan und Methan vervollständigen eine Reihe von Experimenten, mit der die Nahordnung des Systems eingehender untersucht werden sollte. Weiterhin wurden bereits ermittelte Streudaten einer CD4/CH4 Mischung ausgewertet. Die Daten des reinen Methans erwiesen sich wegen der hohen inkohärenten Streuung des Wasserstoffs als nicht verwertbar. Genauere Strukturinformationen des Systems konnten mit Hilfe von EPSR Simulationen erhalten werden. Diese auf der Monte-Carlo Methode basierenden Simulationen führen eine Verbesserung gegebener Paarpotentiale mit Hilfe experimenteller Streudaten durch. Es konnte gezeigt werden, daß Systeme mit einfachen intermolekularen Wechselwirkungen durch Paarpotentiale ausreichend gut beschrieben werden können. Bei komplexeren intermolekularen Wechselwirkungen versagen diese aber im allgemeinen. Die Struktur fluiden Fluorwasserstoffs wird durch ab initio Simulationen deutlich besser wiedergegeben, als es Paarpotentiale vermögen. Außerdem besitzen die Car-Parrinello Simulationen die Fähigkeit, umfassende Aussagen über die Struktur und die Dynamik von Systemen zu machen. Aufgrund von Beschränkungen, die klassischen Modellen auferlegt werden – wie z.B. ein fester Bindungsabstand -, ist dies bei force field Simulationen nicht unbedingt möglich.