Browsing by Author "Lang, Felix"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Analog-Digital-Umsetzer für die hochbitratige Datenübertragung(2014) Lang, Felix; Berroth, Manfred (Prof. Dr.-Ing.)Diese Arbeit befasst sich mit der Theorie, der Entwicklung und der Vermessung von hochbitratigen CMOS-Analog-Digital-Wandlern. Dabei liegt durch die Entwicklung von zwei Parallel-A-D-Wandlern ein besonderer Fokus auf dieser Wandlerstruktur und auf Schaltungskomponenten zur Erweiterung dieser Architektur. Basierend auf dem Projekt 100GET werden zwei Parallelwandler mit nominaler Auflösung von 6 bit und einer Zielwandlerrate von 25 GS/s konzipiert und aufgebaut. Die A-D-Wandler besitzen Echtzeitschnittstellen, welche nicht nur zum Test, sondern auch für Echtzeit-Übertragungsexperimente verwendet werden können. Aufgrund der daraus resultierenden hohen Ausgangsdatenraten wird ein eigenes Messsystem auf Basis eines FPGA realisiert. Die Wandler an sich lassen sich als Einzelblöcke direkt mit großen digitalen Rechenkernen auf einem Chip integrieren, wodurch sich sowohl die Kosten als auch die Komplexität im Vergleich zu Multichipmodulen stark reduzieren. In Kapitel 1 werden die Anwendungsgebiete von schnellen A-D-Wandlern vorgestellt und es wird aufgezeigt, dass den Wandlern in aktuellen und wohl auch zukünftigen Übertragungs-, Mess- und Radarsystemen eine Schlüsselposition zufällt. Durch die Verlagerung immer mehr analoger Funktionen in den Bereich der digitalen Signalnachverarbeitung werden die Anforderungen an die Schnittstelle zwischen analoger und digitaler “Welt“ immer größer. Weiterhin werden in diesem Kapitel die Ziele des zugrundeliegenden Projekts 100GET erläutert, woraus sich direkt die Anforderungen an die entworfenen Testwandler ADU V1 und ADU V2 ergeben. Grob lassen sich die Anforderungen direkt aus dem gewünschten Funktionsbaustein ablesen. Dies ist ein 25 GS/s 6 bit Parallelwandler mit einer Bandbreite über der Nyquistfrequenz, Echtzeitschnittstellen, einer niedrigen Leistungsaufnahme unter 3 W und einem niedrigen Flächenbedarf unter 1 mm in einer 90 nm CMOS-Technologie. Kapitel 2 befasst sich mit den theoretischen Grundlagen. Dazu werden zunächst verschiedene A-D-Wandlerstrukturen mit ihren jeweiligen Merkmalen vorgestellt, die geeignet sind, hohe Abtastraten zu erzielen. Dazu zählen neben Mehrschritt-, Hybrid- bzw. Faltungs- und Parallel-A-D-Wandlern auch stark zeitverschachtelte langsamere Umsetzertypen, wie beispielsweise A-D-Wandler mit sukzessivem Approximationsregister. Anschließend werden die wichtigsten statischen und dynamischen Eigenschaften und Charakteristika von A-D-Wandlern - wie beispielsweise die integrale und differentielle Nichtlinearität (INL und DNL), das Signalzu-Rausch-und-Störverhältnis (SNDR) oder die effektive Auflösung (ENOB) -erläutert. Abschließend werden verschiedene Störeinflüsse, wie beispielweise Schwellenspannungsverschiebungen über der Temperatur, beschrieben. Dabei liegt hier der Fokus vor allem auf Einflüssen und Effekten, welche in CMOS-Schaltungen auftreten. Im folgenden Kapitel 3 wird die Parallel-A-D-Wandler-Architektur genauer erläutert und vertieft. Verschiedene Konzepte zur Erweiterung der einfachen ParallelArchitektur, wie beispielsweise eine die Auflösung erhöhende Interpolation, werden eingeführt. Anschließend werden die erläuterten Konzepte auf zwei A-DWandler-Testchips umgesetzt. Der erste Wandler ADU V1 ist als zweifach zeitverschachtelter Umsetzer mit Interpolation von 3 auf 6 bit in einer 90 nm CMOSTechnologie ausgeführt. Zusätzlich sind die Pegel der Referenzspannungsleiter mithilfe von kleinen Digital-Analog-Umsetzern (DAU) kalibrierbar. Dies hat den großen Vorteil, dass kein direkter Eingriff in den analogen Pfad des Wandlers erfolgt und somit fast keine negativen Effekte, wie beispielsweise ein Bandbreiteverlust durch die Kalibrierungseingriffe, auftreten. Weiterhin wird ein gegenüber Blasenfehlern nicht empfindlicher Thermometer-zu-Binär-Kodierer eingebaut, welcher auf einer direkten Multiplexerstruktur basiert. Aufgrund der hohen Wandlungsraten in den Sub-ADUs in ADU V1 kommt es zu einer Bandbreitenbegrenzung durch die Sub-ADUs selbst. Die zweite Wandlerversion ADU V2 beruht weitestgehend auf den bereits in ADU V1 vorgestellten und umgesetzten Konzepten und Komponenten. Allerdings wird anstatt einer zweifachen eine vierfache Zeitverschachtelung gewählt, da sich so die harten Geschwindigkeitsanforderungen von 12,5 GS/s pro Kanal auf 6,25 GS/s reduzieren lassen. Weiterhin wird vor den parallelen Komparatoren eine Baumstruktur implementiert, welche aus linearisierten Verstärkern aufgebaut ist. Die Linearisierung erfolgt durch eine Source-Degeneration des differentiellen nFET-Paares einer CML-Grundzelle. Durch die Degenerationswiderstände sind die Verstärker ebenfalls mithilfe von DAUs kalibrierbar. Durch einseitiges Einbringen von Kalibrierungsströmen am differentiellen NMOS-Paar der CML-Verstärker kann der Nulldurchgang verschoben werden. Beidseitiges Einbringen von Strömen führt zu einer Erhöhung der Verstärkung. Die Baumstruktur führt zu einer Reduzierung der Eingangskapazität des Gesamtwandlers. Auch rein digitale Schaltungsteile, wie die zur Synchronisierung mit dem Messsystem benötigten Pseudozufallszahlengeneratoren, werden vorgestellt. Für ADU V1 ist eine direkte PRBS-Struktur ausreichend, während für ADU V2 aus Taktungs- und Synchronisierungsgründen eine modifizierte Halbraten-PRBSStruktur bevorzugt wird. Nach Behandlung der Schaltungskonzepte und Blockschaltbilder folgen bei beiden Wandlern eine kurze Erläuterung zum Maskenentwurf, ein Foto der fertig prozessierten Wandler-Chips und die jeweiligen erzielten Simulationsergebnisse. Die Simulation der extrahierten Maskenentwurfsnetzlisten mit Rauscheffekten zeigt für beide Wandler eine Auflösung von 5 bit bei niedrigen Eingangssignalfrequenzen. Bei Wandler ADU V1 ergibt sich durch Bandbreitenbeschränkungen eine Reduktion auf zum Teil 3,4 bit bei höheren Frequenzen. ADU V2 zeigt bis zur Nyquistfrequenz und darüber hinaus ENOB-Werte über 5 bit. Die Vermessung und die ihr zu Grunde liegende Implementierung einer geeigneten Echtzeit-Messumgebung zeigt Kapitel 4. Aufgrund von sehr hohen Kosten kommerzieller Systeme zur Vermessung von schnellen A-D-Wandlern wird für die Vermessung der in Kapitel 3 vorgestellten Wandler ein am INT entwickeltes Messsystem verwendet. Dieses basiert auf der Nutzung eines Virtex4 FPGAEvaluationsboards ML423 von Xilinx. Das VHDL-Design GIMP und die auf Pseudozufallszahlenfolgen basierende Synchronisierungssroutine werden mit den zugrundeliegenden Mechanismen erläutert. Weiterhin werden die entwickelten Messaufbauten dargestellt und erläutert. Für erste Funktionstests wird eine kleine Taconic-Platine mit Kühlmöglichkeit durch ein Peltierelement entworfen. Dieser Aufbau ermöglicht jedoch nicht die Vermessung der maximal möglichen Wandlerrate der ADUs, da die maximalen Ausgangsdatenraten der Wandler von 12,5 Gbit/s nicht von den Schnittstellen des FPGA-Boards detektiert werden können. Die ADU-Chips werden bei diesem Aufbau durch eine Aussparung in der Platine direkt auf das Peltierelement geklebt und durch Gold-Bonddrähte mit der Platine verbunden. Der zweite Messaufbau basiert auf einem Dünnschicht-Keramik Substrat. Darauf wird ein A-D-Wandler zusammen mit vier zusätzlichen Demultiplexern zur Reduzierung der Ausgangsdatenraten untergebracht. Die Chips sind ebenfalls in Vertiefungen verklebt und über Gold-Bonddrähte mit der Platine verbunden. Die Verbindung der Chips untereinander und mit den analogen Eingangssignalen erfolgt durch gekoppelte Mikrostreifen- und Koplanarleitungen. Die Dünnschichtplatine ist auf einer großen Taconic-Platine befestigt, auf welcher die digitalen Ausgangssignale sternförmig verteilt werden und über SMP-Stecker abgegriffen werden können. Die Kontrolle der Messungen mit dem VHDL-Design und den Messaufbauten erfolgt mit dem Visual-Basic.Net-Programm chIMP. Es bietet diverse Kontrollund Steuerfunktionen - beispielsweise lässt sich die Synchronisierung der Messumgebung mit dem FPGA-Design starten oder ein systematischer Durchkämmungsalgorithmus zur Kalibrierung durchführen. Anschließend werden die mit dem Messsystem erzielten Messergebnisse für die beiden entwickelten A-D-Umsetzer-Testchips und einen weiteren Testchip, welcher diverse Einzelkomponenten umfasst, vorgestellt. Obwohl, vor allem beim ersten A-D-Wandler-Testchip, diverse Probleme durch den komplexen und aufwendigen Aufbau der Wandler und des Messsystems auftreten, lassen sich für Wandler ADU V1 Abtastraten von 24 GS/s und für Wandler ADU V2 18 GS/s nachweisen. Weiterhin kann für ADU V2 mithilfe von diversen einfachen Kalibrierungsdurchläufen eine Auflösung von 4,5 bit für die Einzelkanäle bei niedrigen Abtastraten gezeigt werden. Bei einer Abtastrate von 18 GS/s zeigen die Kanäle noch eine Auflösung von 4,3 bit mit einer Verlustleistung von 2,5 W. Dies führt zu einem Gütefaktor (engl.: Figure of Merit, FOM) von 7,05 pJ pro Wandlungsschritt. Diese Werte lassen sich durch Optimierungen des Messsystems oder der A-D-Wandler selbst weiter optimieren. Kapitel 5 fasst die erzielten Simulations- und Messergebnisse aus Kapitel 3 und 4 zusammen. Die erzielten Ergebnisse werden genauer bewertet und Optimierungsmöglichkeiten, sowohl für die A-D-Umsetzer als auch für die Vermessung bzw. für das Messsystem, werden erläutert. Die Arbeit abschließend erfolgt ein Vergleich der beiden Wandler zum Stand der Technik. Die beiden Wandler können zwar mit dem besten, vom Anwendungsfall her ähnlichen, Wandler in Bezug auf Leistungsverbrauch und ENOB-Werte nicht in jeder Beziehung mithalten, dennoch zeigen die Ergebnisse die Funktionalität und den Nutzen der entwickelten Konzepte. Ähnliche oder bessere Werte können mit den gleichen Strukturen durch einen kleineren Technologieknoten, kleinere Gattergrößen und durch mehr Kalibierungseingriffe erzielt werden.