Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Lehmann, Frank"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Instrumented monitoring of moisture and salt by electrical impedance measurements
    (2018) Lehmann, Frank; Garrecht, Harald (Prof. Dr.-Ing.)
    The determination of the moisture content in building materials is a contro versially discussed subject. The only scientifically accepted reference is the gravimetric method, i.e. the moisture assessment of a sample of building material by drying. Yet, even here, disagreements arise from the question of the “correct” drying temperature, which results from the multiple definitions in use for the dry material state. The significance of moisture for a virtually inconceivable number of matters in civil engineering reflects in the nonetheless numerous approaches for its measurement. Some of them are successfully established in practice, despite of the debates on their accuracy and reproducibility. The reason lies in the urgent need for suitable moisture measurement methods. Their use is not totally condemnable, but requires a profound understanding of the underlying physical concepts and the knowledge of each method’s application, possibilities and limitations. The measurement of a material’s electrical impedance for the determination of its moisture content are often viewed especially critical. This objection is justified primarily by the strong influence of salts and other conductive inclusions, such as clay or metals. However, the method has some unique features, which, if applied right, can give valuable insight into processes within the considered material or investigated structure. In contrast to many other methods, it is possible to realize an instrumented monitoring of an object outside of laboratory conditions. The measurement location remains fixed wherever chosen and therefore allows the comprehension of gradual processes, such as drying or accumulation of salts, while offering the possibility to continuously take the ever-changing ambient conditions into account. The focus of this research work lies on putting impedance spectroscopy into practical application. The method itself has long been studied, but only the latest developments of fully integrated impedance converters have made it possible to incorporate impedance functionality into structural health monitoring systems. Their scope regarding accuracy or frequency range is certainly reduced compared to laboratory devices. However, this evolution provides the opportunity for a permanent instrumentation of structures outside of laboratory conditions to assess moisture developments therein. Special attention was set in the research to the development and optimization of suitable impedance electrodes, which show both sufficient durability for instrumented monitoring and minimize the influence of the electric double layer. It was found that nickel-graphite silicon electrodes are well suited. To be capable of understanding impedance data, which is influenced under natural conditions by many factors that do not or only in other ways occur in a protected laboratory environment, it is necessary to study these effects on the impedance. The two main sources of material moisture are the humidity from the air and capillary water. The present thesis regards impedance measurements for qualitative moisture monitoring of porous building materials, particularly sandstone. Long-term measurements were carried out to research the gradually adapting material moisture of different sandstones caused by a change in the ambient relative humidity between 54 and 100 %. The considered sandstone varieties were selected from southern Germany. In detail Abbacher green sandstone, Burgpreppacher sandstone, Main sandstone white-grey, Sander reed sandstone and Trebgaster new red sandstone. Further measurements were performed to study the detectability of water fronts during the capillary rise of water and the subsequent drying process, as well as the influence of temperature changes. To begin with, the scientific motivation for the present work is presented in chapter 1. Chapter 2 introduces the basic concepts of porosity, water storage and transport therein, and the effects of soluble salts in this water. Chapter 3 gives an overview of electrical impedance monitoring with special respect to measurements on porous materials. Possibilities for the temperature compensation of impedance data are presented. The developed device for impedance monitoring is described in chapter 4. Its conception in the global context of other moisture measurement options and with regard to the specific field of monitoring of protected historic structures is examined. The optimization of the impedance electrodes and the choice of a suitable measurement frequency are discussed. Chapter 5 presents the impedance monitoring of sandstone in the hygroscopic and over-hygroscopic moisture range. A look at the time-dependent data collected for different sandstone types during a long-term experiment with stepwise variation of the ambient relative humidity is followed by an analysis of the impedance regarding material moisture and its distribution within the porous network. The measurement of capillary rise of water and a reflection on possible electrode configurations along with their consequences for the detection of capillary water fronts are regarded thereafter. The chapter closes with a description of the procedure for temperature compensation of impedance data. An example of applied impedance monitoring is presented in the concluding chapter 6, which regards both the hygroscopic and over-hygroscopic moisture range. Two more application examples follow, which show a perspective for other applications. The first pictures the monitoring of hydrating screed, the second illustrates the use of impedance monitoring for the assessment of self-healing concrete.
  • Thumbnail Image
    ItemOpen Access
    A novel runtime algorithm for the real-time analysis and detection of unexpected changes in a real-size SHM network with quasi-distributed FBG sensors
    (2021) Sakiyama, Felipe Isamu H.; Lehmann, Frank; Garrecht, Harald
    The ability to track the structural condition of existing structures is one of the main concerns of bridge owners and operators. In the context of bridge maintenance programs, visual inspection predominates nowadays as the primary source of information. Yet, visual inspections alone are insufficient to satisfy the current needs for safety assessment. From this perspective, extensive research on structural health monitoring has been developed in recent decades. However, the transfer rate from laboratory experiments to real-case applications is still unsatisfactory. This paper addresses the main limitations that slow the deployment and the acceptance of real-size structural health monitoring systems (SHM) and presents a novel real-time analysis algorithm based on random variable correlation for condition monitoring. The proposed algorithm was designed to respond automatically to detect unexpected events, such as local structural failure, within a multitude of random dynamic loads. The results are part of a project on SHM, where a high sensor-count monitoring system based on long-gauge fiber Bragg grating sensors (LGFBG) was installed on a prestressed concrete bridge in Neckarsulm, Germany. The authors also present the data management system developed to handle a large amount of data, and demonstrate the results from one of the implemented post-processing methods, the principal component analysis (PCA). The results showed that the deployed SHM system successfully translates the massive raw data into meaningful information. The proposed real-time analysis algorithm delivers a reliable notification system that allows bridge managers to track unexpected events as a basis for decision-making.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart