Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Leis, Artur"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Different coupling mechanisms for a novel modular plate in acetabular fractures : a comparison using a laparoscopic model
    (2024) Menger, Maximilian M.; Herath, Steven C.; Ellmerer, Andreas E.; Trulson, Alexander; Hoßfeld, Max; Leis, Artur; Ollig, Annika; Histing, Tina; Küper, Markus A.; Audretsch, Christof K.
    Introduction: Acetabular fractures are among the most challenging injuries in traumatology. The complex anatomy usually requires extensive surgical approaches baring the risk for iatrogenic damage to surrounding neurovascular structures. As a viable alternative, minimally invasive endoscopic techniques have emerged during the recent years. This paper reports on the feasibility of different coupling mechanisms for a novel suprapectineal plate especially designed for minimally invasive acetabular surgery. Methods: A total number of 34 participants contributed to the present study, who differed in their arthroscopic and surgical experience. A laparoscopic model was used to compare four different coupling mechanisms by the number of failed attempts, the time required for plate fixation, the influence of surgical experience as well as the learning success for each individual coupling mechanism. Moreover, the feasibility of each mechanism was evaluated by a questionnaire. Results: The results demonstrate that plates employing grooved and pressure-sliding coupling mechanisms exhibit fewer failed attempts and reduce trial times, especially in contrast to sole sliding mechanisms. Furthermore, our study revealed that proficiency in endoscopic procedures significantly influenced the outcome. Notably, the subjective evaluation of the participants show that the pressure base and pressure-slide base plate designs are the most supportive and feasible designs. Conclusions: In summary, the present study evaluates for the first-time different plate and coupling designs for minimal-invasive surgery, indicating a superior feasibility for plates with a grooved and pressure-sliding mechanism.
  • Thumbnail Image
    ItemOpen Access
    Process window for highly efficient laser-based powder bed fusion of AlSi10Mg with reduced pore formation
    (2021) Leis, Artur; Weber, Rudolf; Graf, Thomas
  • Thumbnail Image
    ItemOpen Access
    Tuning the hardness of produced parts by adjusting the cooling rate during laser-based powder bed fusion of AlSi10Mg by adapting the process parameters
    (2022) Leis, Artur; Traunecker, David; Weber, Rudolf; Graf, Thomas
    The mechanical properties of parts produced by laser-based powder bed fusion (LPBF) are mainly determined by the grain structure in the material, which is governed by the cooling rate during solidification. This cooling rate strongly depends on the scan velocity and the absorbed laser power. Experiments with varying process parameters were performed to develop and validate an analytical model that predicts the hardness of printed AlSi10Mg parts. It was found that it is possible to tune the hardness of additively manufactured parts of AlSi10Mg in a range between 60 ± 9 HV0.5 and 100 ± 10 HV0.5 by adjusting the cooling rate during solidification with adapted process parameters.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart