Browsing by Author "Linder, Tamás"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Lossless transformations and excess risk bounds in statistical inference(2023) Györfi, László; Linder, Tamás; Walk, HarroWe study the excess minimum risk in statistical inference, defined as the difference between the minimum expected loss when estimating a random variable from an observed feature vector and the minimum expected loss when estimating the same random variable from a transformation (statistic) of the feature vector. After characterizing lossless transformations, i.e., transformations for which the excess risk is zero for all loss functions, we construct a partitioning test statistic for the hypothesis that a given transformation is lossless, and we show that for i.i.d. data the test is strongly consistent. More generally, we develop information-theoretic upper bounds on the excess risk that uniformly hold over fairly general classes of loss functions. Based on these bounds, we introduce the notion of a δ -lossless transformation and give sufficient conditions for a given transformation to be universally δ -lossless. Applications to classification, nonparametric regression, portfolio strategies, information bottlenecks, and deep learning are also surveyed.