Browsing by Author "Ludwig, Thomas"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Thermoanalytische und konstitutionelle Charakterisierung des Systems Si3N4-Y2O3-Al2O3-SiO2(2008) Ludwig, Thomas; Aldinger, Fritz (Prof. Dr.)Die gängigsten Additive für das Flüssigphasensintern von Si3N4 sind Y2O3 und Al2O3. Diese Oxide bilden mit dem immer auf der Oberfläche von Si3N4 befindlichen SiO2 eine flüssige Phase, die bei Temperaturen ab 1200°C Stickstoff löst. Nach der Abkühlung liegt ein Teil dieser Schmelzphase als amorphe stickstoffhaltige Korngrenzenphase vor, die in einer weiteren Wärmebehandlung teilweise auskristallisiert werden kann. Hierbei entstehen stickstoffhaltige Sekundärphasen wie zum Beispiel die Oxinitride Apatit, Y10(SiO4)6N2, Melilith, Y2Si3O3N4 und Wöhlerit Y4Si2O7N2. Da nur wenig thermodynamische Daten dieser oxinitridischen Phasen in der Literatur zu finden sind, wurden erstmals Wärmekapazitätsdaten auf direktem Wege mittels dynamischer Hochtemperaturkalorimetrie ermittelt. Im Fall von Apatit und Wöhlerit liegen die Messdaten bis 15% über der Neumann-Kopp-Abschätzungen, für Melilith 17% unterhalb der Abschätzung. Die Bildungsenthalpien der Verbindungen Yttrium-Monosilikat Y2SiO5, Ytterbium-Monosilikat (Yb2SiO5), YAM (Y4Al2O9), Apatit (Y10(SiO4)6N2) und Wöhlerit (Y4Al2O7N2) wurden mit Hochtemperatur-Einwurflösungskalorimetrie (Alkali-Borat-Schmelze als Lösungsmittel) gemessen. Die Verbindungen sind stabil bezüglich ihrer Ausgangsverbindungen und den Elementen. Eine Ausnahme liegt für die YAM Phase Y4Al2O9 vor. Die Bildungsenthalpie bezüglich den binären Oxiden ist nur schwach exotherm. Im System Y2O3-Al2O3-SiO2 wurde die eutektische Temperatur des SiO2-reichen Eutektikums überprüft und die Schmelzenthalpie bestimmt. Die eutektische Temperatur liegt mit 1371±5°C über den experimentellen Literaturwerten und unterhalb des von Gröbner [94Grö] berechneten Wertes. Desweiteren konnte eine quasiternäre Phase mit der Zusammensetzung Y0,9Al1,3Si1,7O7 (auf 7 Sauerstoff-Atome normiert) detektiert werden. Eine Strukturbestimmung war bisher nicht möglich. Auch ist nicht geklärt, ob die Phase nur metastabil vorliegt oder ob aus kinetischen Gründen die Bildung nur aus der Glasphase erfolgt. Geht man von der fremdionenstabilisierten y-Modifikation des Disilikats aus, so lässt sich die Stöchiometrie YAlSi2O7 als Endglied ableiten. Damit wäre auch die Elektroneutralitätsbedingung erfüllt. Es wurden Aluminosilikatgläser mit unterschiedlichem Stickstoffgehalt mit temperaturabhängiger Röntgenpulverdiffraktometrie untersucht, um die Kristallisation in situ zu verfolgen. Die Kristallisationstemperaturen nahmen mit steigendem Stickstoffgehalt zu. Dies ist auf die stärkere Vernetzung durch den Einbau des trivalenten Stickstoffanions zurückzuführen. Es erfolgt immer zuerst die Kristallisation einer Yttriumdisilikat-Modifikation, gefolgt von Aluminatphasen. Im Gegensatz zu Auslagerungsexperimenten kristallisiert das Disilikat in der für den entsprechenden Temperaturbereich stabilen Modifikation und wandelt dann mit zunehmender Temperatur in die nächst stabilere Modifikation um. Die Umwandlungstemperaturen stimmen mit den Literaturangaben überein. In klassischen Experimenten (Auslagerung eines Festkörpers im Ofen) findet meist zuerst eine Primärkristallisation zweier unterschiedlicher Disililikat-Modifikationen statt, wobei oft Modifikationen auskristallisieren, die bei den entsprechenden Temperaturen nicht stabil sein dürften. Da das Kristallisationsverhalten von der Beweglichkeit der Baugruppen oder Ionen im Glas abhängt und damit von der Viskosität, werden hier Strukturen bevorzugt die ähnlich der Struktureinheiten im Glas aufgebaut sind, obwohl sie thermodynamisch eigentlich nicht stabil sind.