Browsing by Author "Lust, Daniel"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Renewable district energy systems with formic acid based hydrogen storage(2022) Lust, Daniel; Eicker, Ursula (Prof. Dr.)In zukünftigen Energiesystemen mit einem hohen Anteil fluktuierender Energieerzeugung durch Windkraft und Photovoltaik, wird Wasserstoff aus einer Elektrolyse eine zunehmend wichtige Rolle einnehmen. Die lokale Speicherung und der Transport von Wasserstoff sind jedoch technologisch herausfordernd. Eine vielversprechende Möglichkeit zur Wasserstoffspeicherung ist das Laden und Entladen eines Trägermoleküls, was oftmals eine drucklose Speicherung und die Verwendung bestehender Transportinfrastruktur erlaubt. Ameisensäure enthält 4.4 Gew.-% Wasserstoff, ist unter Umgebungsbedingungen flüssig und damit ein potentiell geeignetes Wasserstoffträgermolekül. Die zugrunde liegende Forschungsfrage dieser Arbeit ist, ob und unter welchen Voraussetzungen ameisensäurebasierte Wasserstoffspeicher für eine Anwendung als saisonaler Energiespeicher im Gebäudesektor geeignet sind. Ein Ziel dieser Arbeit ist die Modellierung ameisensäurebasierter Wasserstoffspeichersysteme. Es werden drei Systeme beschrieben mit jeweils den folgenden Hauptkomponenten: eine reversible Wasserstoffbatterie, Flussreaktoren für die Hin- und Rückreaktion von Wasserstoff zu Ameisensäure und ein CO2-Elektrolyseur für die direkte elektrochemische Reduktion von gasförmigem CO2 mit Wasser zu Ameisensäure. Die entwickelten Modelle wurden mit experimentellen Daten oder Literaturwerten validiert. Weiterhin werden Verfahren zur Dimensionierung dieser Systeme, zur Betriebsführung und zur Integration in bestehende Energiesysteme gezeigt. In einer Fallstudie werden verschiedene Leistungsparameter der drei Systeme, wie Wirkungsgrad, Platzbedarf und Systemkomplexität, bewertet und einem Referenzsystem gegenübergestellt. Es hat sich gezeigt, dass eine übertragbare, regelbasierte Dimensionierung der Systeme aufgrund der hohen Systemkomplexität unzureichend ist. Optimierungsverfahren, z.B. mit genetischen Algorithmen, könnten zu besseren Ergebnissen führen, setzen jedoch das Vorhandensein von Systemmodellen voraus. Die Fallstudie für ein Gebäudecluster hat ergeben, dass der CO2-Elektrolyseur insgesamt das am besten geeignete System für eine Anwendung als Energiespeicher ist. Die Zugänglichkeit flüssiger Ameisensäure ermöglicht einen einfachen Energietransport und die Reaktion läuft unter moderaten Bedingungen ab. Der CO2-Elektrolyseur wurde daraufhin detaillierter betrachtet und wesentliche Parameter für die Fallstudie optimiert. Durch hohe Überspannungen der Elektrolysezellen weist der CO2-Elektrolyseur jedoch einen geringen Gesamtwirkungsgrad auf, wodurch in der betrachteten Fallstudie kein wirtschaftlicher Betrieb möglich ist. Auch die Erhöhung der Eingangsleistung durch die Hinzunahme von Kleinwindkraftanlagen hat nur einen geringen Einfluss auf die Gesamtperformance des Systems. Weiterer Forschungsbedarf zur hardwareseitigen Verbesserung des CO2-Elektrolyseurs und zur Steuerung und Betriebsführung mit fluktuierender elektrischer Last ist demnach notwendig um den Wirkungsgrad zu erhöhen und einen wirtschaftlichen Einsatz des Systems als saisonaler Energiespeicher zu ermöglichen.