Browsing by Author "Mauser, Rebekka"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state(2017) Mauser, Rebekka; Kungulovski, Goran; Keup, Corinna; Reinhardt, Richard; Jeltsch, AlbertHistone post-translational modifications (PTMs) play central roles in chromatin-templated processes. Combinations of two or more histone PTMs form unique interfaces for readout and recruitment of chromatin-interacting complexes, but the genome-wide mapping of co-existing histone PTMs remains an experimentally difficult task. We introduce here a novel type of affinity reagents consisting of two fused recombinant histone modification interacting domains (HiMID) for direct detection of doubly modified chromatin. To develop the method, we fused the MPP8 Chromodomain and DNMT3A PWWP domain which have a binding specificity for H3K9me3 and H3K36me2/3, respectively. We validate the novel reagent biochemically and in ChIP applications and show its specific interaction with H3K9me3-H3K36me2/3 doubly modified chromatin. Modification specificity was confirmed using mutant double-HiMIDs with inactivated methyllysine binding pockets. Using this novel tool, we mapped co-existing H3K9me3-H3K36me2/3 marks in human cells by chromatin interaction domain precipitation (CIDOP). CIDOP-seq data were validated by qPCR, sequential CIDOP/ChIP and by comparison with CIDOP- and ChIP-seq data obtained with single modification readers and antibodies. The genome-wide distribution of H3K9me3-H3K36me2/3 indicates that it represents a novel bivalent chromatin state, which is enriched in weakly transcribed chromatin segments and at ZNF274 and SetDB1 binding sites.Item Open Access Development of artificial single and double reading domains to analyze chromatin modification patterns(2018) Mauser, Rebekka; Jeltsch, Albert (Prof. Dr.)The unstructured N-terminal tails of histone proteins carry many different post-translational modifications (PTMs), like methylation, acetylation or phosphorylation. These PTMs can alter the chromatin structure, influence the interaction of adjacent nucleosomes and serve as specific binding sites for histone interacting domains. Currently, the investigation of histone tail PTMs is mainly based on antibodies, however concerns about the specificity of these antibodies and reproducibility of data arouse. Therefore, it was one aim of this thesis to develop alternative approaches to histone tail PTM antibodies. Previous studies already showed that histone modification interacting domains (HiMIDs) can replace histone tail antibodies in a highly effective manner. As part of this work, the TAF3 PHD domain was established as new H3K4me3 specific HiMID. In peptide array binding and Far-western blot assays, the domain showed a specific interaction with H3K4me3 modifications. Also in ChIP like experiments (CIDOP: Chromatin Interacting Domain Precipitation) coupled to qPCR and next generation sequencing, the domain showed a similar performance as validated H3K4me3 antibodies. With the proposal of the histone code hypothesis the question was raised if combinations of histone modifications carry specific biological functions. However, so far, the experimental analysis of the co-occurrence of histone modification on the same nucleosome in a genome-wide manner is a challenging task. For this reason, the main aim of this work was to develop double reading domains in which two histone reading domains are fused together with a flexible linker to achieve simultaneously readout of dual histone tail modifications in a single CIDOP experiment. To validate the concept, the Dnmt3a PWWP domain and the MPP8 Chromo domain were fused together and their specific recognitions of H3K36me2/3 and H3K9me3 histone tail modifications were analyzed. Biochemical investigations like peptide arrays, Far-western blot and western blot experiments showed that both domains specifically interact with their targets and preferentially interact with double modified chromatin. Additionally, the preferred interaction with double modified chromatin could be further verified with binding pocket mutants and methyl-lysine analogues. The newly generated double domain was used in chromatin precipitation experiments to identify genome regions where both modifications are present. The genome-wide distribution of the H3K36me2/3-H3K9me3 showed that this combination of histone marks represents a novel bivalent chromatin state, which is associated with weakly transcribed genes and is enriched for binding sites of ZNF274 and SetDB1. Also in this work, mixed peptide arrays were introduced as new screening method for the efficient analysis of double reading domains. The naturally occurring double reading domain of the BPTF protein was used to demonstrate the capability of this new screening tool. BPTF contains a PHD domain, which binds to H3K4me3 and a Bromo domain, which interacts with acetyl groups of the H4 tail. Synergistic binding to both peptides was shown using the newly developed mixed peptide arrays. Additionally, in the course of this work mixed peptide arrays were used to optimize several of the designed double reading domains. Furthermore, some other double reading domains were generated in this work, like PWWP-ATRX, MPP8 Chromo domain-L-double Tudor and CBX7 Chromo domain-L-MPP8 Chromo domain and analyzed for specific dual readout. Also double reading domains with dual specificity for DNA methylation and histone marks were generated. The firstly used methyl-DNA binding domain of the MBD2 protein showed a strong binding, dominating the effect of the HiMIDs. Therefore, the weaker but still specific methyl-DNA binding domain of the MBD1 protein was used. First experiments with this new fusion constructs showed a simultaneously interaction with chromatin which is associated with DNA methylation and histone PTMs. In summary, the studies with double reading domains showed that with this novel method precipitation of double modified chromatin is possible and that the genome-wide investigation of newly studied bivalent chromatin states is feasible. Therefore, this novel approach makes it possible to analyze many different combinations of histone modifications, investigate their influence on chromatin and gain a deeper understanding of the biological role behind histone tail modification patterns.Item Open Access Refined read‐out : the hUHRF1 Tandem‐Tudor domain prefers binding to histone H3 tails containing K4me1 in the context of H3K9me2/3(2023) Choudalakis, Michel; Kungulovski, Goran; Mauser, Rebekka; Bashtrykov, Pavel; Jeltsch, AlbertUHRF1 is an essential chromatin protein required for DNA methylation maintenance, mammalian development, and gene regulation. We investigated the Tandem-Tudor domain (TTD) of human UHRF1 that is known to bind H3K9me2/3 histones and is a major driver of UHRF1 localization in cells. We verified binding to H3K9me2/3 but unexpectedly discovered stronger binding to H3 peptides and mononucleosomes containing K9me2/3 with additional K4me1. We investigated the combined binding of TTD to H3K4me1-K9me2/3 versus H3K9me2/3 alone, engineered mutants with specific and differential changes of binding, and discovered a novel read-out mechanism for H3K4me1 in an H3K9me2/3 context that is based on the interaction of R207 with the H3K4me1 methyl group and on counting the H-bond capacity of H3K4. Individual TTD mutants showed up to a 10,000-fold preference for the double-modified peptides, suggesting that after a conformational change, WT TTD could exhibit similar effects. The frequent appearance of H3K4me1-K9me2 regions in human chromatin demonstrated in our TTD chromatin pull-down and ChIP-western blot data suggests that it has specific biological roles. Chromatin pull-down of TTD from HepG2 cells and full-length murine UHRF1 ChIP-seq data correlate with H3K4me1 profiles indicating that the H3K4me1-K9me2/3 interaction of TTD influences chromatin binding of full-length UHRF1. We demonstrate the H3K4me1-K9me2/3 specific binding of UHRF1-TTD to enhancers and promoters of cell-type-specific genes at the flanks of cell-type-specific transcription factor binding sites, and provided evidence supporting an H3K4me1-K9me2/3 dependent and TTD mediated downregulation of these genes by UHRF1. All these findings illustrate the important physiological function of UHRF1-TTD binding to H3K4me1-K9me2/3 double marks in a cellular context.