Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Mori, Magnus"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Core design analysis of the supercritical water fast reactor
    (2005) Mori, Magnus; Lohnert, Günter (Prof., Ph.D.)
    Light Water Reactor technology is nowadays the most successful commercial application of fission reactors for the production of electricity. However, in the next years, nuclear industry will have to face new and demanding challenges. The need for sustainable and cheap sources of energy, the need for public acceptance, the need for even higher safety standards, the need to minimize waste production are only a few examples. It is for these very reasons that a few next generation nuclear reactor concepts were selected for extensive research and development. Super critical water cooled reactors are one of them. The use of a supercritical coolant would in fact allow for higher thermal efficiencies and a more compact plant design. As a matter of fact, steam generators, or steam separators and driers would not be needed thus, significantly reducing construction costs. Moreover, because of the high heat capacity of supercritical water, comparatively less coolant would be needed to refrigerate the reactor. Consequently, a water-cooled reactor with a fast neutron spectrum could potentially be designed: the SuperCritical water Fast Reactor. This system presents unique features combining well-known fast and light water reactor characteristics in one design (e.g. the tendency to a positive void reactivity coefficient together with Loss Of Coolant Accidents, as design basis). The core is in fact loaded with highly enriched Mixed OXide fuel (average plutonium content of ~23%), and presents a peculiar and significant geometrical and material heterogeneity (use of radial and axial blankets, solid moderator layers, several enrichment zones). The safety analysis of this very complex core layout, the development of suitable tools of investigation, and the optimization of the void reactivity effect through core design, is the main objective of this work.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart