Browsing by Author "Mwalongo, Finian"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Interactive web-based visualization(2018) Mwalongo, FinianThe visualization of large amounts of data, which cannot be easily copied for processing on a user’s local machine, is not yet a fully solved problem. Remote visualization represents one possible solution approach to the problem, and has long been an important research topic. Depending on the device used, modern hardware, such as high-performance GPUs, is sometimes not available. This is another reason for the use of remote visualization. Additionally, due to the growing global networking and collaboration among research groups, collaborative remote visualization solutions are becoming more important. The additional use of collaborative visualization solutions is eventually due to the growing global networking and collaboration among research groups. The attractiveness of web-based remote visualization is greatly increased by the wide availability of web browsers on almost all devices; these are available today on all systems - from desktop computers to smartphones. In order to ensure interactivity, network bandwidth and latency are the biggest challenges that web-based visualization algorithms have to solve. Despite the steady improvements in available bandwidth, these improvements are still significantly slower than, for example, processor performance, resulting in increasing the impact of this bottleneck. For example, visualization of large dynamic data in low-bandwidth environments can be challenging because it requires continuous data transfer. However, bandwidth improvement alone cannot improve the latency because it is also affected by factors such as the distance between server and client and network utilization. To overcome these challenges, a combination of techniques is needed to customize the individual processing steps of the visualization pipeline, from efficient data representation to hardware-accelerated rendering on the client side. This thesis first deals with related work in the field of remote visualization with a particular focus on interactive web-based visualization and then presents techniques for interactive visualization in the browser using modern web standards such as WebGL and HTML5. These techniques enable the visualization of dynamic molecular data sets with more than one million atoms at interactive frame rates using GPU-based ray casting. Due to the limitations which exist in a browser-based environment, the concrete implementation of the GPU-based ray casting had to be customized. Evaluation of the resulting performance shows that GPU-based techniques enable the interactive rendering of large data sets and achieve higher image quality compared to polygon-based techniques. In order to reduce data transfer times and network latency, and improve rendering speed, efficient approaches for data representation and transmission are used. Furthermore, this thesis introduces a GPU-based volume-ray marching technique based on WebGL 2.0, which uses progressive brick-wise data transfer, as well as multiple levels of detail in order to achieve interactive volume rendering of datasets stored on a server. The concepts and results presented in this thesis contribute to the further spread of interactive web-based visualization. The algorithmic and technological advances that have been achieved form a basis for further development of interactive browser-based visualization applications. At the same time, this approach has the potential for enabling future collaborative visualization in the cloud.